跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊富傑
Fu-Chuen Yang
論文名稱: 以HHT分析法研究陣風風場中建築物之表面風壓
指導教授: 朱佳仁
Chia R. Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 126
中文關鍵詞: 希爾伯特-黃分析陣風風場風洞實驗壓力係數
外文關鍵詞: Hilbert-Huang Transform, Gusty flow, Wind tunnel experiment, Pressure coefficient
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以風洞實驗的方式探討在穩態風場及陣風風場中三維圓柱體及矩柱體建築物模型表面壓力之分佈情形。實驗條件包括無陣風以及三種不同頻率的週期性陣風風場,實驗中使用電子式壓力掃描器,可同時量測多個位置的瞬時壓力。由實驗結果可計算得建築物表面的平均、擾動壓力分佈與機率密度函數,風壓頻譜分析方法採用傅立葉頻譜分析及希爾伯特-黃分析兩種方法。研究結果顯示:陣風風場之平均壓力係數分佈趨勢與穩態風場、邊界層流十分接近,數值則介在兩者之間,可將陣風視為一種過渡流;圓柱體的最大擾動壓力發生在最大負壓發生處,陣風來流造成圓柱體在迎風面及分離區的擾動壓力增大;由傅立葉頻譜分析及希爾伯特-黃分析之風壓頻譜結果顯示圓柱體渦流逸散頻率為13 Hz,史徹荷數為0.22;窄迎風面矩柱體渦流逸散頻率為10 Hz,史徹荷數為0.082,較邊界層流與陣風風場中的史徹荷數為小。當陣風頻率增大時,史徹荷數增大,顯示渦流逸散頻率增加。本研究之結果可幫助吾人瞭解對穩態風場與陣風風場中三維圓柱體及矩柱體對流況與壓力分佈的影響,可供相關工程設計之參考。


    This study experimentally investigates the pressure distribution on the surface of three-dimensional building model in an uniform flow and periodically varying flows. The experiments were carried out in an atmospheric boundary layer wind tunnel. This wind tunnel is equipped with a gust generator that can generate periodically varying flows of adjustable frequency. Flow condition includes one rectangular cylinder and one circular cylinder of smooth surface. Instantaneous fluctuating wind pressures were measured by an electronic pressure scanner. Based on the pressure measurement, the distributions of mean, rms pressure coefficients were calculated. Furthermore, Hilbert-Huang Transform (HHT) was used for the time-frequency domain analysis. The experimental results also revealed that the rms pressure coefficient increase under gusty wind. Also, the probability of pressure fluctuations for positive pressure are close to the Gaussian distribution function. On the other hand, negative pressure side was skewed and did not necessary follow Gaussian distribution.

    中文摘要 I 英文摘要 II 圖目錄 VI 表目錄 X 符號表 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究內容及大綱 3 第二章 理論基礎與文獻回顧 4 2.1 均勻流場特性 4 2.2 陣風 4 2.3 風流經建築物之行為 5 2.4 壓力係數量測 6 2.4.1 表面風壓 6 2.4.2 設計風壓規範 7 2.5 頻譜分析理論 10 2.5.1 傅立葉(Fourier)頻譜分析 10 2.5.2 HHT(Hilbert-Huang Transform)時間-頻率分析 12 2.6 前人文獻回顧 14 第三章 實驗設備與方法 21 3.1 大型環境風洞與陣風產生器 21 3.1.1 大型環境風洞 21 3.1.2 陣風產生器(Gust generator) 22 3.2 風速量測方法 23 3.3 壓力量測方法 25 3.3.1 前人研究 25 3.3.2 壓力量測儀器 27 3.3.3 儀器校正 28 3.3.4 壓力量測 30 3.4 實驗方法 30 3.4.1 穩態風場模擬 30 3.4.2 建築物模型 31 3.4.3 實驗數據採樣技巧 32 3.5 頻譜分析方法 32 3.5.1 傅立葉頻譜分析 32 3.5.2 HHT時間-頻率分析 33 第四章 結果與討論 50 4.1 陣風風場機制 50 4.1.1 陣風平均風速 50 4.1.2 陣風流場側方向的均勻性 51 4.1.3 紊流強度 51 4.1.4 HHT分析結果 52 4.2 圓柱體之表面風壓 53 4.2.1 穩態風場 53 4.2.2 陣風風場 55 4.2.3 機率分佈 57 4.2.4 HHT分析結果 59 4.3 寬迎風面矩柱體之表面風壓 62 4.3.1 穩態風場 62 4.3.2 陣風風場 64 4.3.3 機率分佈 65 4.4 窄迎風面矩柱體之表面風壓 66 4.4.1 穩態風場 66 4.4.2 陣風風場 68 4.4.3 機率分佈 69 4.4.4 HHT分析結果 70 4.5 準穩態假設 72 第五章 結論與建議 117 5.1 結論 117 5.2 建議 119 參考文獻 120 附錄 A:相關函數 124

    1. 熊萬銀 (1996) “結構震動與流場互制現象之風洞實驗研究”, 國立成功大學土木工程研究所碩士論文
    2. 蔡益超、陳瑞華、項維邦 (1996) “建築物風力規範條文、解說及示範例之研訂”, 內政部建築研究所研究報告
    3. 莊威男 (2000) “超高層建築在紊流邊界層中表面風壓分佈之風洞試驗研究”, 國立海洋大學河海工程研究所碩士論文
    4. 卓勇志 (2001) “邊界層中雙棟並排矩形建築之表面風壓量測”, 國立中央大學土木工程研究所碩士論文
    5. 中華民國內政部營建署 (2002) “建築技術規則(91年1月修正版)”, 內政部營建署法規
    6. 李肇軒 (2002) “圓柱體形建築物表面風壓之實驗研究”, 國立中央大學土木工程研究所碩士論文
    7. 陳若華、蔡明樹、傅仲麟 (2003) “大氣邊界層流場中矩柱體尖峰風壓特性研究”, 中華民國第二十七屆全國力學會議, 台南
    8. 李有豐、黃皓君、張順益、黃鋼 (2004) “非韌性雙層跨含牆RC架構之擬動態試驗與結構反應之HHT分析”, 建築學報, 第47期,pp.53-75
    9. Bearman, P.W. (1969) “On vortex shedding from a circular cylinder in the critical Reynolds number regime”, Journal of Fluid Mechanics, Vol.37, pp.577-585
    10. Bendat, J.S. and Piersol, A.G. (1986) Random Data-Analysis and Measurement Procedures, 2nd edition
    11. Cheung, J.C.K. and Melbourne, W.H. (1983) “Turbulence effects on some aerodynamic parameters of a circular cylinder at supercritical Reynolds numbers”, Journal Wind Engineering and Industrual Aerodynamics, Vol.14, pp.399-410
    12. Cochran, L.S. and Cermak, J.E. (1992) “Full- and model-scale cladding pressure on the Texas Tech University experimental building”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.41-44, pp.1589-1600
    13. Hu, C.C., Miau, J.J. and Chou, J.H. (2002) “Instantaneous vortex-shedding behavior in periodically varying flow”, Proceedings of Royal Society of London, Series A 458, pp.911-932
    14. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shin, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998) “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis”, Proceedings of Royal Society of London, Series A 454, pp.903-995
    15. Huang, N.E., Shen, Z. and Long, S.R. (1999) “A new view of nonlinear water wave:the Hilbert spectrum”, Annu. Rev. Fluid Mech., Vol. 31, pp.417-457
    16. Huang, N.E., Wu, M.C., Shen, S.S.P., Qu, W., Gloersen, P. and Fan, K.L. (2003) “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis”, Proceedings of Royal Society of London, Series A 459, pp.2317-2345
    17. Kareem, A. and Cermak, J.E. (1984) “Pressure fluctuations on a square building model in boundary-layer flows”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.16, pp.17-41
    18. Kobayashi, H., Hatanaka, A. and Ueda, T. (1994) “Active simulation of time histories of strong wind gust in a wind tunnel”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.53, pp.315-330
    19. Kiya, M., Sasaki, K. and Arie, M. (1981) “Discrete-vortex simulation of a turbulent separation bubble”, Journal of Fluid Mechanics, Vol.120, pp.219-244
    20. Lee B.E. (1975) ”The effect of turbulence on the surface pressure field of a square prism”, J. of Fluid Mech., Vol.69, pp.263-282
    21. Letchford, C.W., Iverson, R.E. and McDonald, J.R. (1993) “The application of the quasi-steady theory to full scale measurements on Texas Tech Building”, J. of Wind Eng. and Industrial Aerodyn., Vol.48, pp.111-132
    22. Luo, S.C., Gan, T.L., and Chew, Y.T. (1996) “Uniform flow past one (or two in tandem) finite length circular cylinder(s)”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.59, pp.69-93
    23. Nakamura, Y. and Tomonari, Y. (1982) “The effects of surface roughness on the flow past circular cylinders at high Reynolds numbers”, J. Fluid Mech., Vol.123, pp.363-378
    24. Naudascher, E. (1991) “Hydrodynamic Forces”, A.A. Balkema
    25. Nishimura, H. and Taniike, Y. (2001) “Aerodynamic characteristics of fluactuating forces on a circular cylinder”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.89, pp.713-723
    26. Okajima A. (1982) “Strouhal numbers of rectangular cylinders”, J. of Fluid Mech., Vol.123, pp.379-398
    27. Okamoto, S. and Sunabashiri, Y. (1992) “Vortex shedding from a circular cylinder of finite length placed on a flat plate”, Journal of Fluid Mechanics, Vol.114, pp.512-537
    28. Parkinson, G.V. (1974) “Mathematical models of flow-induced vibrations of bluff bodies”, Flow-induced structural vibrations, E. Naudascher(ed). Springer, pp.81
    29. Peterka, J.A. and Cermak, J.E. (1975) “Wind pressure on buildings-probability densities”, Journal of the Structural Division, ASCE Vol.101, pp.1255-1267
    30. Rae, W.H.J., Barlow, J.B. and Pope, A. (1999) “Low-Speed Wind Tunnel testing”, Johns Wiley & Sons, Inc.
    31. Roshko, A. (1960) “Experiments on the flow past a circular cylinder at very high Reynolds number”, Journal of Fluid Mechanics, Vol.10, pp.345-356
    32. Sitheeq, M., Iyengar, A. and Farell, C. (1997) “Effect of turbulence and its scales on the pressure field on the surface of a three-dimensional square prism”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.69-71, pp.461-471
    33. Suzuki, M., Kondo, K., Sanada, S. and Minamide, K. (1993) “Prediction of the wind induced response of multi-story building-using simultaneous multi-channel measuring control system”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.50, pp.341-350
    34. Uematsu, Y. and Yamada, M. (1995) “Effects of aspect ratio and surface roughness on th time-averaged aerodynamic forces on cantilevered circular cylinders at high Reynolds number”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.54-55, pp.301-312
    35. Uematsu, Y. and Isyumov, N. (1999) “Wind pressure acting on low-rise buildings”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.82, pp.1-25

    QR CODE
    :::