跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周柏宇
Po-Yu Chou
論文名稱: 牛蛙視網膜對刺激亮度的預測作用
Dynamics of Anticipating to Whole Field Light Stimuli in Bullfrog Retinae
指導教授: 陳志強
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 99
中文關鍵詞: 視網膜互信息負群延遲預測震盪
外文關鍵詞: Retina, Mutual information, Negative group delay, Prediction, Oscillation
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 視覺的預測對動物的生存至關重要,它可以克服訊號從神經節細胞傳輸到大腦的時間延遲。研究指出預測作用主要發生在視網膜,其中包含對於動作的預測與時間上的預測。在我們的研究中,全域的刺激包括規則的與隨機的刺激模式被用來測試牛蛙視網膜的預測作用,並且以互信息(time-lag mutual information; TLMI)的分析方法來確認細胞的輸出是否能預測隨機的刺激。為了進一步了解視網膜是如何預測多樣化的刺激,我們採用群延遲(group delay)的概念,其可以描述一個信號在不同頻率域的延遲,而負群延遲則能導致訊號的預測。從一個延時回饋(delayed-feedback)模型,我們可以得到負群延遲的結果(因此又稱Negative group delay模型;NGD模型),而在群延遲的解析解裡,只有在低於\SI{1}{\hertz}時出現負值,因此,實驗結果顯示,低通濾波後的的隨機刺激在截止頻率更低時有更好的預測效果,此結果也得到了合理的解釋。另外,在互信息出現的雙峰與多峰的結果可以用以NGD模型為基礎的視網膜迴路重現,藉由理解這些模型,我們可以給予視網膜的預測作用在生理上更佳的解釋。


    Prediction of vision is crucial for animals to survive. It can overcome the neuron delay during the transmission from retina ganglion cells to the brain. Studies show that prediction mainly occurs in retinae, including motion prediction and temporal prediction. In our work, whole field stimuli with regular and stochastic pattern are applied to confirm the temporal prediction in bullfrog retinae. The result of stochastic stimuli are analyzed by time-lag mutual information (TLMI) to determine the prediction in a cell. To better realize how retinae predict various stimuli, group delay ($\delta(\omega)$), which describes the signal delay as a function of frequency, is used. Negative group delay (NGD) leads to prediction. It can be demonstrated by a delayed feedback model (named negative group delay model, or NGD model). The analytic analysis of group delay shows that NGD of the model exists at low frequency domain ($f<\SI{1}{\hertz}$). This offers a reasonable explanation to the experiment result that low-pass stochastic stimuli can elicit larger prediction under low enough cut-off frequency ($f_c$). Also, the double or multiple peaks in TLMI can be reproduced by the circuit model which are based on the NGD model: NGD retinal circuit and the one with additional feedforward pathway, NGDFF retinal circuit. By understanding these models, we can give better physiological explanations of the anticipatory dynamics in a retina.

    摘要ix Abstract xi Acknowledgement xiii Contents xv Glossary xxv 1 Introduction 1 1.1 Introduction of Retina . 1 1.2 Anticipation in a Retina . . 2 1.2.1 Anticipation of constant speed moving bar 3 1.2.2 Omitted stimulus response (OSR) 5 1.2.3 Anticipation of stochastic stimuli. 5 1.3 Negative Group Delay. 6 1.4 Organization of the Thesis 8 2 Method and Material 11 2.1 Sample Preparation. 11 2.2 Experimental Setups12 2.2.1 Data recording MultiElectrode Array (MEA). . 13 2.3 Data Processing . 15 2.3.1 Spike Sorting . . 15 2.4 Light Stimulation Setup . . 16 2.5 Light Stimulation Pattern and protocol18 2.5.1 Stochastic stimuli . 19 2.5.2 Gaussian pulse . 21 2.6 Analysis Method 22 2.6.1 Spike binning . . 22 2.6.2 Spiketrigger average (STA) . . 23 2.6.3 Timedelayed Mutual Information (TLMI) 24 2.7 Circuit Model 27 2.7.1 Anticipatory relaxation dynamic model from Voss. . 27 2.7.2 Twocell negative group delay model (NGD model) 28 2.7.3 NGD model in retina. 29 2.7.4 Spike generation . . 30 3 Experiment and Simulation Result 33 3.1 Experiment Result. . 33 3.1.1 Regular transient stimuli: Gaussian pulse. . 33 3.1.2 Stochastic Stimuli: OU and LPOU . . 34 3.2 Simulation Result . . 39 3.2.1 Model simulation: Gaussian pulse stimuli . 40 3.2.2 Predictive cell model reproduction . . 40 3.2.3 Intrinsic oscillation in the retinal circuit 42 3.2.4 Nonpredictive cell model reproduction 44 4 Discussion and Conclusion 47 4.1 Prediction in a Retina related to the Stimulation Speed . . 47 4.2 Delayed Feedback Model Leading to Negative Group Delay in a Retina50 4.2.1 Prediction depends on frequency components of stimuli . . 50 4.2.2 Importance of delayed feedback. . 50 4.3 Oscillation activities in neural system. 51 4.4 STA inconsistency between simulation and experiment . 53 4.5 Influence of Stimulation Contrast . . 55 4.6 Conclusion and Future Work 58 Bibliography 59 A Model supplement 63 A.1 Delayed Feedforward Inhibition Model . 63 B Code 67 B.1 NGDFF retinal circuit . 67 B.2 Functions. . 70

    [1] M. J. Berry, I. H. Brivanlou, T. A. Jordan, and M. Meister, “Anticipation of moving stimuli by the retina,” Nature, vol. 398, no. 6725, pp. 334–338, 1999, ISSN: 00280836.
    DOI: 10.1038/18678.
    [2] B. G. Borghuis and A. Leonardo, “The role of motion extrapolation in amphibian prey capture,”
    Journal of Neuroscience, vol. 35, no. 46, pp. 15 430–15 441, 2015, ISSN: 02706474.
    DOI: 10.
    1523/jneurosci.318915.2015.
    [3] T. Chaya, A. Matsumoto, Y. Sugita, S. Watanabe, R. Kuwahara, M. Tachibana, and T. Furukawa,
    “Versatile functional roles of horizontal cells in the retinal circuit,” Scientific Reports, vol. 7, no. 1,
    2017, ISSN: 20452322.
    DOI: 10.1038/s41598017055432.
    [4] N. K. Kuhn and T. Gollisch, “Joint encoding of object motion and motion direction in the salamander
    retina,” Journal of Neuroscience, vol. 36, no. 48, pp. 12 203–12 216, 2016, ISSN: 02706474.
    DOI: 10.1523/jneurosci.197116.2016.
    [5] M. Im and S. I. Fried, “Directionally selective retinal ganglion cells suppress luminance responses
    during natural viewing,” Scientific Reports, vol. 6, no. 1, p. 35 708, 2016, ISSN: 20452322.
    DOI:
    10.1038/srep35708.
    [6] D. A. Clark, R. Benichou, M. Meister, and R. Azeredo Da Silveira, “Dynamical adaptation in
    photoreceptors,” vol. 9, no. 11, e1003289, 2013, ISSN: 15537358.
    DOI: 10.1371/journal.pcbi.
    1003289.
    [7] T. Szikra, S. Trenholm, A. Drinnenberg, J. Jüttner, Z. Raics, K. Farrow, M. Biel, G. Awatramani,
    D. A. Clark, J.A.
    Sahel, R. A. Da Silveira, and B. Roska, “Rods in daylight act as relay cells for
    59
    conedriven
    horizontal cell–mediated surround inhibition,” Nature Neuroscience, vol. 17, no. 12,
    pp. 1728–1735, 2014, ISSN: 10976256.
    DOI: 10.1038/nn.3852.
    [8] J. Bergman and J. Calkins, “Why the inverted human retina is a superior design.”
    [9] F. J. Carreras, “The inverted retina and the evolution of vertebrates: An evodevo
    perspective,”
    Annals of Eye Science, vol. 3, pp. 19–19, 2018, ISSN: 25204122.
    DOI: 10.21037/aes.2018.02.03.
    [10] Á. J. Tengölics, G. Szarka, A. Ganczer, E. SzabóMeleg,
    M. Nyitrai, T. KovácsÖller,
    and B. Völgyi,
    “Response latency tuning by retinal circuits modulates signal efficiency,” Scientific Reports,
    vol. 9, no. 1, 2019, ISSN: 20452322.
    DOI: 10.1038/s4159801951756y.
    [11] J. H. Maunsell and J. R. Gibson, “Visual response latencies in striate cortex of the macaque monkey,”
    J Neurophysiol, vol. 68, no. 4, pp. 1332–44, 1992, ISSN: 00223077
    (Print) 00223077.
    DOI:
    10.1152/jn.1992.68.4.1332.
    [12] D. W. Crevier and M. Meister, “Synchronous perioddoubling
    in flicker vision of salamander and
    man,” Journal of Neurophysiology, vol. 79, no. 4, pp. 1869–1878, 1998, ISSN: 00223077.
    DOI:
    10.1152/jn.1998.79.4.1869.
    [13] G. Schwartz, R. Harris, D. Shrom, and M. J. Berry, “Detection and prediction of periodic patterns
    by the retina,” vol. 10, no. 5, pp. 552–554, 2007, ISSN: 10976256.
    DOI: 10.1038/nn1887.
    [14] G. Schwartz and M. J. Berry, “Sophisticated temporal pattern recognition in retinal ganglion cells,”
    Journal of Neurophysiology, vol. 99, no. 4, pp. 1787–1798, 2008, ISSN: 00223077.
    DOI: 10.1152/
    jn.01025.2007.
    [15] K. S. Chen, C.C.
    Chen, and C. K. Chan, “Characterization of predictive behavior of a retina
    by mutual information,” Frontiers in Computational Neuroscience, vol. 11, no. 66, 2017, ISSN:
    16625188.
    DOI: 10.3389/fncom.2017.00066.
    [16] C. G. B. Garrett and D. E. McCumber, “Propagation of a gaussian light pulse through an anomalous
    dispersion medium,” Physical Review A, vol. 1, no. 2, pp. 305–313, 1970, ISSN: 05562791.
    DOI:
    10.1103/physreva.1.305.
    60
    [17] S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Physical Review Letters,
    vol. 48, no. 11, pp. 738–741, 1982, ISSN: 00319007.
    DOI: 10.1103/physrevlett.48.738.
    [18] T. Nakanishi, K. Sugiyama, and M. Kitano, “Demonstration of negative group delays in a simple
    electronic circuit,” American Journal of Physics, vol. 70, no. 11, pp. 1117–1121, 2002, ISSN:
    00029505.
    DOI: 10.1119/1.1503378.
    [19] H. U. Voss, “Signal prediction by anticipatory relaxation dynamics,” Physical Review E, vol. 93,
    no. 3, 2016, ISSN: 24700045.
    DOI: 10.1103/physreve.93.030201.
    [20] H. Ishikane, M. Gangi, S. Honda, and M. Tachibana, “Synchronized retinal oscillations encode
    essential information for escape behavior in frogs,” Nature Neuroscience, vol. 8, no. 8, pp. 1087–
    1095, 2005, ISSN: 10976256.
    DOI: 10.1038/nn1497.
    [21] A. Koskelainen, S. Hemilä, and K. Donner, “Spectral sensitivities of shortand
    longwavelength
    sensitive cone mechanisms in the frog retina,” Acta Physiologica Scandinavica, vol. 152, no. 1,
    pp. 115–124, 1994, ISSN: 00016772.
    DOI: 10.1111/j.17481716.1994.
    tb09790.x.
    [22] R. V. Stirling and E. G. Merrill, “Functional morphology of frog retinal ganglion cells and their
    central projections: The dimming detectors,” J Comp Neurol, vol. 258, no. 4, pp. 477–95, 1987,
    ISSN: 00219967
    (Print) 00219967
    (Linking). DOI: 10.1002/cne.902580402.
    [23] K. Warwick, “The cyborg revolution,” NanoEthics, vol. 8, no. 3, pp. 263–273, 2014, ISSN: 18714757.
    DOI: 10.1007/s115690140212z.
    [24] 60mea100/10irtipr
    | www.multichannelsystems.com, https://www.multichannelsystems.com/
    products/60mea10010irtipr,
    (Accessed on 01/22/2021).
    [25] Www.multichannelsystems.com | innovations in electrophysiology, https://www.multichannelsystems.
    com/, (Accessed on 01/21/2021).
    [26] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian motion,” Physical Review,
    vol. 36, no. 5, pp. 823–841, 1930, ISSN: 0031899X.
    DOI: 10.1103/physrev.36.823.
    61
    [27] T. M. Cover, Elements of information theory. Hoboken, N.J: WileyInterscience,
    2006, ISBN:
    0471241954.
    [28] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal,
    vol. 27, no. 3, pp. 379–423, 1948. DOI: 10.1002/j.15387305.1948.
    tb01338.x.
    [29] A. Drinnenberg, F. Franke, R. K. Morikawa, J. Jüttner, D. Hillier, P. Hantz, A. Hierlemann, R.
    Azeredo Da Silveira, and B. Roska, “How diverse retinal functions arise from feedback at the first
    visual synapse,” Neuron, vol. 99, no. 1, 117–134.e11, 2018, ISSN: 08966273.
    DOI: 10.1016/j.
    neuron.2018.06.001.
    [30] P.Y.
    Chou, J.F.
    Chien, K. S. Chen, Y.T.
    Huang, C.C.
    Chen, and C. K. Chan, “Anticipation and
    negative group delay in a retina,” Physical Review E, vol. 103, no. 2, 2021, ISSN: 24700045.
    DOI: 10.1103/physreve.103.l020401.
    [31] X. L. Yang and S. M. Wu, “Feedforward lateral inhibition in retinal bipolar cells: Inputoutput
    relation
    of the horizontal celldepolarizing
    bipolar cell synapse,” Proceedings of the National Academy
    of Sciences, vol. 88, no. 8, pp. 3310–3313, 1991, ISSN: 00278424.
    DOI: 10.1073/pnas.88.8.3310.
    [32] D. Heeger, “Poisson model of spike generation,” Oct. 2000.
    [33] C. M. Gray and W. Singer, “Stimulusspecific
    neuronal oscillations in orientation columns of cat
    visual cortex,” Proceedings of the National Academy of Sciences, vol. 86, no. 5, pp. 1698–1702,
    1989, ISSN: 00278424.
    DOI: 10.1073/pnas.86.5.1698.
    [34] X.W.
    Qiu, H.Q.
    Gong, P.M.
    Zhang, and P.J.
    Liang, “The oscillationlike
    activity in bullfrog
    on–off retinal ganglion cell,” Cognitive Neurodynamics, vol. 10, no. 6, pp. 481–493, 2016, ISSN:
    18714080.
    DOI: 10.1007/s115710169397x.
    [35] K. Koepsell, X. Wang, J. Hirsch, and F. Sommer, “Exploring the function of neural oscillations in
    early sensory systems,” Frontiers in Neuroscience, vol. 3, no. 10, 2010, ISSN: 1662453X.
    DOI:
    10.3389/neuro.01.010.2010.

    QR CODE
    :::