| 研究生: |
周柏宇 Po-Yu Chou |
|---|---|
| 論文名稱: |
牛蛙視網膜對刺激亮度的預測作用 Dynamics of Anticipating to Whole Field Light Stimuli in Bullfrog Retinae |
| 指導教授: | 陳志強 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 視網膜 、互信息 、負群延遲 、預測 、震盪 |
| 外文關鍵詞: | Retina, Mutual information, Negative group delay, Prediction, Oscillation |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
視覺的預測對動物的生存至關重要,它可以克服訊號從神經節細胞傳輸到大腦的時間延遲。研究指出預測作用主要發生在視網膜,其中包含對於動作的預測與時間上的預測。在我們的研究中,全域的刺激包括規則的與隨機的刺激模式被用來測試牛蛙視網膜的預測作用,並且以互信息(time-lag mutual information; TLMI)的分析方法來確認細胞的輸出是否能預測隨機的刺激。為了進一步了解視網膜是如何預測多樣化的刺激,我們採用群延遲(group delay)的概念,其可以描述一個信號在不同頻率域的延遲,而負群延遲則能導致訊號的預測。從一個延時回饋(delayed-feedback)模型,我們可以得到負群延遲的結果(因此又稱Negative group delay模型;NGD模型),而在群延遲的解析解裡,只有在低於\SI{1}{\hertz}時出現負值,因此,實驗結果顯示,低通濾波後的的隨機刺激在截止頻率更低時有更好的預測效果,此結果也得到了合理的解釋。另外,在互信息出現的雙峰與多峰的結果可以用以NGD模型為基礎的視網膜迴路重現,藉由理解這些模型,我們可以給予視網膜的預測作用在生理上更佳的解釋。
Prediction of vision is crucial for animals to survive. It can overcome the neuron delay during the transmission from retina ganglion cells to the brain. Studies show that prediction mainly occurs in retinae, including motion prediction and temporal prediction. In our work, whole field stimuli with regular and stochastic pattern are applied to confirm the temporal prediction in bullfrog retinae. The result of stochastic stimuli are analyzed by time-lag mutual information (TLMI) to determine the prediction in a cell. To better realize how retinae predict various stimuli, group delay ($\delta(\omega)$), which describes the signal delay as a function of frequency, is used. Negative group delay (NGD) leads to prediction. It can be demonstrated by a delayed feedback model (named negative group delay model, or NGD model). The analytic analysis of group delay shows that NGD of the model exists at low frequency domain ($f<\SI{1}{\hertz}$). This offers a reasonable explanation to the experiment result that low-pass stochastic stimuli can elicit larger prediction under low enough cut-off frequency ($f_c$). Also, the double or multiple peaks in TLMI can be reproduced by the circuit model which are based on the NGD model: NGD retinal circuit and the one with additional feedforward pathway, NGDFF retinal circuit. By understanding these models, we can give better physiological explanations of the anticipatory dynamics in a retina.
[1] M. J. Berry, I. H. Brivanlou, T. A. Jordan, and M. Meister, “Anticipation of moving stimuli by the retina,” Nature, vol. 398, no. 6725, pp. 334–338, 1999, ISSN: 00280836.
DOI: 10.1038/18678.
[2] B. G. Borghuis and A. Leonardo, “The role of motion extrapolation in amphibian prey capture,”
Journal of Neuroscience, vol. 35, no. 46, pp. 15 430–15 441, 2015, ISSN: 02706474.
DOI: 10.
1523/jneurosci.318915.2015.
[3] T. Chaya, A. Matsumoto, Y. Sugita, S. Watanabe, R. Kuwahara, M. Tachibana, and T. Furukawa,
“Versatile functional roles of horizontal cells in the retinal circuit,” Scientific Reports, vol. 7, no. 1,
2017, ISSN: 20452322.
DOI: 10.1038/s41598017055432.
[4] N. K. Kuhn and T. Gollisch, “Joint encoding of object motion and motion direction in the salamander
retina,” Journal of Neuroscience, vol. 36, no. 48, pp. 12 203–12 216, 2016, ISSN: 02706474.
DOI: 10.1523/jneurosci.197116.2016.
[5] M. Im and S. I. Fried, “Directionally selective retinal ganglion cells suppress luminance responses
during natural viewing,” Scientific Reports, vol. 6, no. 1, p. 35 708, 2016, ISSN: 20452322.
DOI:
10.1038/srep35708.
[6] D. A. Clark, R. Benichou, M. Meister, and R. Azeredo Da Silveira, “Dynamical adaptation in
photoreceptors,” vol. 9, no. 11, e1003289, 2013, ISSN: 15537358.
DOI: 10.1371/journal.pcbi.
1003289.
[7] T. Szikra, S. Trenholm, A. Drinnenberg, J. Jüttner, Z. Raics, K. Farrow, M. Biel, G. Awatramani,
D. A. Clark, J.A.
Sahel, R. A. Da Silveira, and B. Roska, “Rods in daylight act as relay cells for
59
conedriven
horizontal cell–mediated surround inhibition,” Nature Neuroscience, vol. 17, no. 12,
pp. 1728–1735, 2014, ISSN: 10976256.
DOI: 10.1038/nn.3852.
[8] J. Bergman and J. Calkins, “Why the inverted human retina is a superior design.”
[9] F. J. Carreras, “The inverted retina and the evolution of vertebrates: An evodevo
perspective,”
Annals of Eye Science, vol. 3, pp. 19–19, 2018, ISSN: 25204122.
DOI: 10.21037/aes.2018.02.03.
[10] Á. J. Tengölics, G. Szarka, A. Ganczer, E. SzabóMeleg,
M. Nyitrai, T. KovácsÖller,
and B. Völgyi,
“Response latency tuning by retinal circuits modulates signal efficiency,” Scientific Reports,
vol. 9, no. 1, 2019, ISSN: 20452322.
DOI: 10.1038/s4159801951756y.
[11] J. H. Maunsell and J. R. Gibson, “Visual response latencies in striate cortex of the macaque monkey,”
J Neurophysiol, vol. 68, no. 4, pp. 1332–44, 1992, ISSN: 00223077
(Print) 00223077.
DOI:
10.1152/jn.1992.68.4.1332.
[12] D. W. Crevier and M. Meister, “Synchronous perioddoubling
in flicker vision of salamander and
man,” Journal of Neurophysiology, vol. 79, no. 4, pp. 1869–1878, 1998, ISSN: 00223077.
DOI:
10.1152/jn.1998.79.4.1869.
[13] G. Schwartz, R. Harris, D. Shrom, and M. J. Berry, “Detection and prediction of periodic patterns
by the retina,” vol. 10, no. 5, pp. 552–554, 2007, ISSN: 10976256.
DOI: 10.1038/nn1887.
[14] G. Schwartz and M. J. Berry, “Sophisticated temporal pattern recognition in retinal ganglion cells,”
Journal of Neurophysiology, vol. 99, no. 4, pp. 1787–1798, 2008, ISSN: 00223077.
DOI: 10.1152/
jn.01025.2007.
[15] K. S. Chen, C.C.
Chen, and C. K. Chan, “Characterization of predictive behavior of a retina
by mutual information,” Frontiers in Computational Neuroscience, vol. 11, no. 66, 2017, ISSN:
16625188.
DOI: 10.3389/fncom.2017.00066.
[16] C. G. B. Garrett and D. E. McCumber, “Propagation of a gaussian light pulse through an anomalous
dispersion medium,” Physical Review A, vol. 1, no. 2, pp. 305–313, 1970, ISSN: 05562791.
DOI:
10.1103/physreva.1.305.
60
[17] S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Physical Review Letters,
vol. 48, no. 11, pp. 738–741, 1982, ISSN: 00319007.
DOI: 10.1103/physrevlett.48.738.
[18] T. Nakanishi, K. Sugiyama, and M. Kitano, “Demonstration of negative group delays in a simple
electronic circuit,” American Journal of Physics, vol. 70, no. 11, pp. 1117–1121, 2002, ISSN:
00029505.
DOI: 10.1119/1.1503378.
[19] H. U. Voss, “Signal prediction by anticipatory relaxation dynamics,” Physical Review E, vol. 93,
no. 3, 2016, ISSN: 24700045.
DOI: 10.1103/physreve.93.030201.
[20] H. Ishikane, M. Gangi, S. Honda, and M. Tachibana, “Synchronized retinal oscillations encode
essential information for escape behavior in frogs,” Nature Neuroscience, vol. 8, no. 8, pp. 1087–
1095, 2005, ISSN: 10976256.
DOI: 10.1038/nn1497.
[21] A. Koskelainen, S. Hemilä, and K. Donner, “Spectral sensitivities of shortand
longwavelength
sensitive cone mechanisms in the frog retina,” Acta Physiologica Scandinavica, vol. 152, no. 1,
pp. 115–124, 1994, ISSN: 00016772.
DOI: 10.1111/j.17481716.1994.
tb09790.x.
[22] R. V. Stirling and E. G. Merrill, “Functional morphology of frog retinal ganglion cells and their
central projections: The dimming detectors,” J Comp Neurol, vol. 258, no. 4, pp. 477–95, 1987,
ISSN: 00219967
(Print) 00219967
(Linking). DOI: 10.1002/cne.902580402.
[23] K. Warwick, “The cyborg revolution,” NanoEthics, vol. 8, no. 3, pp. 263–273, 2014, ISSN: 18714757.
DOI: 10.1007/s115690140212z.
[24] 60mea100/10irtipr
| www.multichannelsystems.com, https://www.multichannelsystems.com/
products/60mea10010irtipr,
(Accessed on 01/22/2021).
[25] Www.multichannelsystems.com | innovations in electrophysiology, https://www.multichannelsystems.
com/, (Accessed on 01/21/2021).
[26] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian motion,” Physical Review,
vol. 36, no. 5, pp. 823–841, 1930, ISSN: 0031899X.
DOI: 10.1103/physrev.36.823.
61
[27] T. M. Cover, Elements of information theory. Hoboken, N.J: WileyInterscience,
2006, ISBN:
0471241954.
[28] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal,
vol. 27, no. 3, pp. 379–423, 1948. DOI: 10.1002/j.15387305.1948.
tb01338.x.
[29] A. Drinnenberg, F. Franke, R. K. Morikawa, J. Jüttner, D. Hillier, P. Hantz, A. Hierlemann, R.
Azeredo Da Silveira, and B. Roska, “How diverse retinal functions arise from feedback at the first
visual synapse,” Neuron, vol. 99, no. 1, 117–134.e11, 2018, ISSN: 08966273.
DOI: 10.1016/j.
neuron.2018.06.001.
[30] P.Y.
Chou, J.F.
Chien, K. S. Chen, Y.T.
Huang, C.C.
Chen, and C. K. Chan, “Anticipation and
negative group delay in a retina,” Physical Review E, vol. 103, no. 2, 2021, ISSN: 24700045.
DOI: 10.1103/physreve.103.l020401.
[31] X. L. Yang and S. M. Wu, “Feedforward lateral inhibition in retinal bipolar cells: Inputoutput
relation
of the horizontal celldepolarizing
bipolar cell synapse,” Proceedings of the National Academy
of Sciences, vol. 88, no. 8, pp. 3310–3313, 1991, ISSN: 00278424.
DOI: 10.1073/pnas.88.8.3310.
[32] D. Heeger, “Poisson model of spike generation,” Oct. 2000.
[33] C. M. Gray and W. Singer, “Stimulusspecific
neuronal oscillations in orientation columns of cat
visual cortex,” Proceedings of the National Academy of Sciences, vol. 86, no. 5, pp. 1698–1702,
1989, ISSN: 00278424.
DOI: 10.1073/pnas.86.5.1698.
[34] X.W.
Qiu, H.Q.
Gong, P.M.
Zhang, and P.J.
Liang, “The oscillationlike
activity in bullfrog
on–off retinal ganglion cell,” Cognitive Neurodynamics, vol. 10, no. 6, pp. 481–493, 2016, ISSN:
18714080.
DOI: 10.1007/s115710169397x.
[35] K. Koepsell, X. Wang, J. Hirsch, and F. Sommer, “Exploring the function of neural oscillations in
early sensory systems,” Frontiers in Neuroscience, vol. 3, no. 10, 2010, ISSN: 1662453X.
DOI:
10.3389/neuro.01.010.2010.