跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳季芃
Chi-peng Wu
論文名稱: 抗胰島素激素與第一型內皮素刺激3T3-L1 脂肪細胞內SOCS-3 基因表現
Resistin and endothelin-1 stimulate SOCS-3 gene expression in 3T3-L1 adipocyte
指導教授: 高永旭
Yung-hsi Kao
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 98
語文別: 中文
論文頁數: 63
中文關鍵詞: 第一型內皮素
外文關鍵詞: socs-3
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 抗胰島激素、第一型內皮素、SOCS-3被發現和脂肪細胞的活性以及胰島素的阻抗性有關。一些研究指出抗胰島激素會藉由活化SOCS-3而去抑制胰島素作用。然而不論是抗胰島激素還是第一型內皮素他們所影響SOCS-3的訊號機制並不完全清楚。於是本論文想要探討抗胰島激素和第一型內皮素它們是利用什麼途徑來調控3T3-L1脂肪細胞內SOCS-3基因的表現,我們利用RT-PCR 和real time-PCR方法來偵測SOCS-3基因的表現。我們發現處理30 ng/ml的抗胰島激素2小時以及50和100 nM的第一型內皮素4小時都會增加SOCS-3 mRNA的表現。而當我們先加了抑制物比如AG490 (a JAK inhibitor),U0126(an ERK inhibitor),SB203580(a p38 MAPK inhibitor),SP60015 (a JNK inhibitor),Wortmannin (a PI3K inhibitor),LY294002 (a PI3K inhibitor),以及epigallocatechin gallate (EGCG; an ERK inhibitor)都會抑制不論是抗胰島激素或是第一型內皮素所刺激的SOCS-3 mRNA的表現。且這些抑制物單獨處理時並不會影響 SOCS-3 mRNA 表現,但U0126 單獨處理時會增加SOCS-3 mRNA 表現。這些結果表示了抗胰島激素和第一型內皮素會經由JAK2,ERK,p38 MAPK,JNK,和PI3K的途徑來刺激SOCS-3 mRNA的表現。更進一步我們也發現BQ610 (an ETA receptor inhibitor)但不是BQ788 (an ETB receptor inhibitor)會去抑制第一型內皮素增加的SOCS-3 mRNA表現, 然而在單獨處理這些抑制劑時並不會影響SOCS-3的基因表現。這代表了第一型內皮素增加的SOCS-3 mRNA表現是藉由ETAR而不是ETBR。有趣的是,當我們先處理抗胰島激素再處理第一型內皮素時,抗胰島激素會減弱第一型內皮素所增加的SOCS-3 mRNA表現。而當我們先處理第一型內皮素再處理抗胰島激素時,發現第一型內皮素會更進一步增加抗胰島激素所增加的SOCS-3 mRNA表現。這表示在脂肪細胞抗胰島激素和第一型內皮素他們會調控彼此互相拮抗而影響SOCS-3基因表現。它們影響SOCS-3基因表現的途徑能可是藉由相似的kinase 途徑。


    Resistin, endothelin-1 (ET-1), and suppressor of cytokine signaling protein-3 (SOCS-3) have been reported to regulate fat cell activity and insulin resistance, respectively. Previous reports showed that resistin could inhibit insulin action through activation of SOCS-3 protein. However, little are known about the signaling mechanisms of either resistin or ET-1 action on expression of adipocyte SOCS-3 gene. This study investigated the pathways involved in resistin and ET-1 modulation of SOCS-3 gene expression in 3T3-L1 adipocytes using the methods of both RT-PCR and real time-PCR. We found that resistin at 30 ng/ml for 2 h and ET-1 at 50 and 100 nM for 4 h induced increases in SOCS-3 mRNA levels, respectively. In addition, pretreatment with the inhibitors, including AG490 (a JAK inhibitor), an Uo126 (ERK inhibitor), SB203580 (a p38 MAPK inhibitor), SP60015 (a JNK inhibitor), Wortmannin (a PI3K inhibitor), LY294002 (a PI3K inhibitor), and epigallocatechin gallate (EGCG; an ERK inhibitor) inhibited either resistin or ET-1 stimulation of SOCS-3 mRNA levels. Treatment with each inhibitor alone did not significantly alter SOCS-3 mRNA expression, but U0126 alone significantly increased SOCS-3 levels. These data suggest that resistin and ET-1 stimulate SOCS-3 gene expression via the JAK-, ERK-, p38 MAPK-, JNK-, and PI3K-dependent pathways. Moreover, BQ610 (an ETA receptor inhibitor), but not BQ788 (an ETB receptor inhibitor), blocked ET-1-increased SOCS-3 mRNA levels, while treatment with each inhibitor alone did not alter SOCS-3 levels. This suggests the ETAR-dependent and ETBR-independent effect of ET-1. Interestingly, pretreatment with resistin reduced ET-1-increased SOCS-3 mRNA levels, pretreatment with ET-1 increased further resistin-induced increases in SOCS-3 levels. These data suggest that resistin and ET-1 can antagonistically interact to mediate expression of adipocyte SOCS-3 gene and their interactive effects likely depend on a common kinase pathway.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 VI 縮寫及全名對照表 VII 第一章:前言 一、抗胰島激素 (Resistin) 1 二、第一型內皮素 (Endothelin-1) 2 三、SOCS蛋白質(suppressor of cytokine signaling protein) 3 四、研究動機與目的 Part 1:探討抗胰島激素影響SOCS-3基因表現的機制 5 Part 2:探討第一型內皮素影響SOCS-3基因表現的機制 5 第二章:實驗材料與方法 一、材料 7 二、方法 7 1.細胞培養 7 2.細胞處理 8 3.細胞計算方法 8 4.RNA萃取 8 5.反轉錄酶反應 (Reverse Transcriptase,RT) 9 6.聚合酶鏈反應 (Polymerase chain reaction,PCR) 9 7.Q-PCR (real-time PCR) 10 8.PCR產物的分析 11 第三章:實驗結果 Part 1:抗胰島激素影響SOCS-3基因表現機制 12 1.抗胰島激素是藉由JAK 途徑影響SOCS-3基因表現 12 2.抗胰島激素是藉由 MAP Kinase 途徑影響SOCS-3基因表現 12 3.PI3K/AKT 途徑也會影響抗胰島激素所促進的SOCS-3基因表現 13 4.EGCG會抑制抗胰島激素所增加的SOCS-3基因表現 13 5.第一型內皮素會促進抗胰島激素所增加的SOCS-3基因表現 14 Part 2:第一型內皮素影響SOCS-3基因表現及作用機制 14 1.第一型內皮素對於SOCS-3基因表現之影響有能量和時間效應 14 2.第一型內皮素是藉由ETA 受器影響SOCS-3基因表現 15 3.第一型內皮素是藉由JAK 途徑影響SOCS-3基因表現 15 4.第一型內皮素影響SOCS-3基因表現和MAP kinase有關 16 5.PI3K/AKT 途徑也和第一型內皮素影響SOCS-3基因表現有關 17 6.EGCG會抑制第一型內皮素所增加的SOCS-3基因表現 17 7.第一型內皮素所增加的SOCS-3基因表現會被抗胰島激素所抑制 18 第四章:討論 Part 1:抗胰島激素影響SOCS-3基因表現機制 19 Part 2:第一型內皮素影響SOCS-3基因表現及作用機制 20 第五章:結論與展望 24 第六章:參考文獻 25 第七章:附錄 43 附錄一:溶液配製 43 附錄二:其他實驗方法 45 附錄三:其他數據 4

    1. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B 2006 Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 17:4-12
    2. Juan CC, Fang VS, Huang YJ, Kwok CF, Hsu YP, Ho LT 1996 Endothelin-1 induces insulin resistance in conscious rats. Biochem Biophys Res Commun 227:694-699
    3. Sul HS 2004 Resistin/ADSF/FIZZ3 in obesity and diabetes. Trends Endocrinol Metab 15:247-249
    4. McTernan PG, Kusminski CM, Kumar S 2006 Resistin. Curr Opin Lipidol 17:170-175
    5. Banerjee RR, Rangwala SM, Shapiro JS, Rich AS, Rhoades B, Qi Y, Wang J, Rajala MW, Pocai A, Scherer PE, Steppan CM, Ahima RS, Obici S, Rossetti L, Lazar MA 2004 Regulation of fasted blood glucose by resistin. Science 303:1195-1198
    6. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA 2001 The hormone resistin links obesity to diabetes. Nature 409:307-312
    7. Steppan CM, Wang J, Whiteman EL, Birnbaum MJ, Lazar MA 2005 Activation of SOCS-3 by resistin. Mol Cell Biol 25:1569-1575
    8. Calabro P, Samudio I, Willerson JT, Yeh ET 2004 Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation 110:3335-3340
    9. Kim SJ, Nian C, McIntosh CH 2007 Resistin is a key mediator of glucose-dependent insulinotropic polypeptide (GIP) stimulation of lipoprotein lipase (LPL) activity in adipocytes. J Biol Chem 282:34139-34147
    10. Thorin E, Webb DJ 2009 Endothelium-derived endothelin-1. Pflugers Arch
    11. Chai SP, Chang YN, Fong JC 2009 Endothelin-1 stimulates interleukin-6 secretion from 3T3-L1 adipocytes. Biochim Biophys Acta 1790:213-218
    12. Ak G, Buyukberber S, Sevinc A, Turk HM, Ates M, Sari R, Savli H, Cigli A 2001 The relation between plasma endothelin-1 levels and metabolic control, risk factors, treatment modalities, and diabetic microangiopathy in patients with Type 2 diabetes mellitus. J Diabetes Complications 15:150-157
    13. Ahlborg G, Lindstrom J 2002 Insulin sensitivity and big ET-1 conversion to ET-1 after ETA- or ETB-receptor blockade in humans. J Appl Physiol 93:2112-2121
    14. Tokuda H, Takai S, Hanai Y, Matsushima-Nishiwaki R, Hosoi T, Harada A, Ohta T, Kozawa O 2007 (-)-Epigallocatechin gallate suppresses endothelin-1-induced interleukin-6 synthesis in osteoblasts: inhibition of p44/p42 MAP kinase activation. FEBS Lett 581:1311-1316
    15. Usui I, Imamura T, Babendure JL, Satoh H, Lu JC, Hupfeld CJ, Olefsky JM 2005 G protein-coupled receptor kinase 2 mediates endothelin-1-induced insulin resistance via the inhibition of both Galphaq/11 and insulin receptor substrate-1 pathways in 3T3-L1 adipocytes. Mol Endocrinol 19:2760-2768
    16. Banes-Berceli AK, Ketsawatsomkron P, Ogbi S, Patel B, Pollock DM, Marrero MB 2007 Angiotensin II and endothelin-1 augment the vascular complications of diabetes via JAK2 activation. Am J Physiol Heart Circ Physiol 293:H1291-1299
    17. Juan CC, Chang CL, Lai YH, Ho LT 2005 Endothelin-1 induces lipolysis in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 288:E1146-1152
    18. Bhattacharya I, Ullrich A 2006 Endothelin-1 inhibits adipogenesis: role of phosphorylation of Akt and ERK1/2. FEBS Lett 580:5765-5771
    19. Krebs DL, Hilton DJ 2001 SOCS proteins: negative regulators of cytokine signaling. Stem Cells 19:378-387
    20. Croker BA, Kiu H, Nicholson SE 2008 SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol 19:414-422
    21. Rui L, Yuan M, Frantz D, Shoelson S, White MF 2002 SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 277:42394-42398
    22. Shi H, Tzameli I, Bjorbaek C, Flier JS 2004 Suppressor of cytokine signaling 3 is a physiological regulator of adipocyte insulin signaling. J Biol Chem 279:34733-34740
    23. Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, Yang CS 2008 The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr 138:1677-1683
    24. Kim JH, Kim JE, Liu HY, Cao W, Chen J 2008 Regulation of interleukin-6-induced hepatic insulin resistance by mammalian target of rapamycin through the STAT3-SOCS3 pathway. J Biol Chem 283:708-715
    25. Liu HS, Chen YH, Hung PF, Kao YH 2006 Inhibitory effect of green tea (-)-epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway. Am J Physiol Endocrinol Metab 290:E273-281
    26. Lee MJ, Lin H, Liu CW, Wu MH, Liao WJ, Chang HH, Ku HC, Chien YS, Ding WH, Kao YH 2008 Octylphenol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor and extracellular signal-regulated kinase pathways. Am J Physiol Cell Physiol 294:C1542-1551
    27. Fasshauer M, Kralisch S, Klier M, Lossner U, Bluher M, Klein J, Paschke R 2004 Insulin resistance-inducing cytokines differentially regulate SOCS mRNA expression via growth factor- and Jak/Stat-signaling pathways in 3T3-L1 adipocytes. J Endocrinol 181:129-138
    28. Thirone AC, JeBailey L, Bilan PJ, Klip A 2006 Opposite effect of JAK2 on insulin-dependent activation of mitogen-activated protein kinases and Akt in muscle cells: possible target to ameliorate insulin resistance. Diabetes 55:942-951
    29. Fujishiro M, Gotoh Y, Katagiri H, Sakoda H, Ogihara T, Anai M, Onishi Y, Ono H, Abe M, Shojima N, Fukushima Y, Kikuchi M, Oka Y, Asano T 2003 Three mitogen-activated protein kinases inhibit insulin signaling by different mechanisms in 3T3-L1 adipocytes. Mol Endocrinol 17:487-497
    30. Ehlting C, Lai WS, Schaper F, Brenndorfer ED, Matthes RJ, Heinrich PC, Ludwig S, Blackshear PJ, Gaestel M, Haussinger D, Bode JG 2007 Regulation of suppressor of cytokine signaling 3 (SOCS3) mRNA stability by TNF-alpha involves activation of the MKK6/p38MAPK/MK2 cascade. J Immunol 178:2813-2826
    31. Cassatella MA, Gasperini S, Bovolenta C, Calzetti F, Vollebregt M, Scapini P, Marchi M, Suzuki R, Suzuki A, Yoshimura A 1999 Interleukin-10 (IL-10) selectively enhances CIS3/SOCS3 mRNA expression in human neutrophils: evidence for an IL-10-induced pathway that is independent of STAT protein activation. Blood 94:2880-2889
    32. Narayana Y, Balaji KN 2008 NOTCH1 up-regulation and signaling involved in Mycobacterium bovis BCG-induced SOCS3 expression in macrophages. J Biol Chem 283:12501-12511
    33. Kao YH, Hiipakka RA, Liao S 2000 Modulation of obesity by a green tea catechin. Am J Clin Nutr 72:1232-1234
    34. Anderson RA, Polansky MM 2002 Tea enhances insulin activity. J Agric Food Chem 50:7182-7186
    35. Ferri C, Bellini C, Desideri G, Baldoncini R, Properzi G, Santucci A, De Mattia G 1997 Circulating endothelin-1 levels in obese patients with the metabolic syndrome. Exp Clin Endocrinol Diabetes 105 Suppl 2:38-40
    36. Zhong Q, Lin CY, Clarke KJ, Kemppainen RJ, Schwartz DD, Judd RL 2002 Endothelin-1 inhibits resistin secretion in 3T3-L1 adipocytes. Biochem Biophys Res Commun 296:383-387
    37. Vollmar AM 1992 Endothelins. Zentralbl Veterinarmed A 39:481-493
    38. Motta EM, Calixto JB, Rae GA 2006 Mechanical hyperalgesia induced by endothelin-1 in rats is mediated via phospholipase C, protein kinase C, and MAP kinases. Exp Biol Med (Maywood) 231:1141-1145
    39. Nilsson D, Wackenfors A, Gustafsson L, Ugander M, Ingemansson R, Edvinsson L, Malmsjo M 2008 PKC and MAPK signalling pathways regulate vascular endothelin receptor expression. Eur J Pharmacol 580:190-200
    40. Chen QW, Edvinsson L, Xu CB 2009 Role of ERK/MAPK in endothelin receptor signaling in human aortic smooth muscle cells. BMC Cell Biol 10:52
    41. Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK 2002 Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 277:34933-34940
    42. Verma S, Li SH, Wang CH, Fedak PW, Li RK, Weisel RD, Mickle DA 2003 Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation 108:736-740
    43. Kao YH, Chang HH, Lee MJ, Chen CL 2006 Tea, obesity, and diabetes. Mol Nutr Food Res 50:188-210

    QR CODE
    :::