跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳致維
Chih-Wei Chen
論文名稱: 數位光學相位共軛用於立體影像顯示之研究
Study of 3D Image Display Based on Digital Optical Phase Conjugation
指導教授: 楊宗勳
Tsung-Hsun Yang
孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 105
中文關鍵詞: 數位光學相位共軛器小貓自泵相位共軛鏡立體投影數位全像多重鏡面費奈爾反射結構
外文關鍵詞: Digital optical phase conjugator, Kitty Self-Pumped Phase Conjugate Mirror, 3D projection, Digital holography, Confetti-like specular surface, Fresnel Reflective Structure
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中我們將小貓自泵相位共軛術(Kitty Self-Pumped Phase Conjugate Mirror, Kitty-SPPCM)應用於數位光學相位共軛(Digital Optical Phase Conjugator, DOPC)系統。利用 Kitty-SPPCM 系統之穩定、快速以及角度容忍高等優點,發展出一套高效能的 DOPC 系統,並以此 DOPC 系統為基礎,發展一套能重建三維影像資訊之實像投影系統。在此系統中,我們利用費奈爾反射結構,增加系統被接收到的有效通道數,進而提升共軛訊號效率。接著為了提升立體影像的品質,我們計算分析浮空高度對視場角(Field of View, FOV)與可視聚焦點範圍的關係。最後我們以此三維影像投影系統建立由多個共軛聚焦點所組成的長方體影像,並進一步以這些共軛聚焦點排列出不同的英文字母,重建出立體影像。


    In this paper, we apply Kitty Self-Pumped Phase Conjugate Mirror (Kitty-SPPCM) to the Digital Optical Phase Conjugator (DOPC) system. Using the benefits of the Kitty-SPPCM, such like stable, fast, and highlevel of angle tolerance, we develop a high-performance DOPC system. Based on this DOPC system, we develop a real image projection system that can reconstruct 3D image information. In this system, we use the Fresnel reflective structure to increase the received number of channels, and thus promote the efficiency of conjugate signal of the system. To improve the performance of the 3D image, we calculate and analyze: (1) the relationship between floating height and field of view (FOV). (2) the relationship between floating height and the range of the visible reconstruct points. Finally, we use this 3D image projection system to build up a 3D cube matrix formed with reconstruct points. Then we display a 3D image of the letters N, C, and U with these reconstruct points.

    摘要.......................................................................i Abstract..................................................................ii 致謝.....................................................................iii 目錄.......................................................................v 圖索引..................................................................viii 表索引....................................................................xv 第一章 緒論................................................................1 1-1 研究領域介紹.........................................................1 1-1-1 Yaras團隊的立體投影系統.........................................6 1-2 光學相位共軛器之發展 ................................................9 1-3 數位光學相位共軛器之發展............................................10 1-3-1 Yang 團隊2010年之數位光學相位共軛器............................11 1-3-2 Yang 團隊2012年之數位光學相位共軛器............................13 1-3-3 Yang 團隊2015年之數位光學相位共軛器............................15 1-3-4 Psaltis 團隊2012年之數位光學相位共軛器.........................17 1-4 研究動機與挑戰 .....................................................19 1-5 論文大綱及安排 .....................................................19 第二章 實驗相關原理介紹 ..................................................20 2-1 全像術簡介..........................................................20 2-2 Whittaker-Shannon 取樣定理與空間帶寬乘積............................23 2-3 貓式自泵相位共軛器 (Cat-SPPCM)......................................26 2-4 小貓自泵相位共軛器 (Kitty-SPPCM)....................................27 2-5 角頻譜傳遞法 .......................................................28 2-6 訊雜比與有效通道數 .................................................29 第三章 數位光學相位共軛系統 ..............................................33 3-1 數位光學相位共軛系統對位............................................34 3-2 讀取光相位擷取......................................................37 3-3 物光相位擷取........................................................40 3-4 觀測共軛聚焦點 CMOS 之定位..........................................42 3-5 重建共軛物光........................................................42 第四章 立體投影系統等效模型建立及共軛聚焦點分析...........................45 4-1 立體投影系統設計概念 ...............................................45 4-2 利用費奈爾反射結構之系統等效模型建立................................47 4-3 物光、費奈爾反射結構與收光系統之初階計算............................49 4-4 物光與費奈爾反射結構距離對於共軛聚焦點視場角與可視範圍大小之分析....52 第五章 應用費奈爾反射結構於立體投影系統實驗之分析.........................57 5-1 重建多個共軛聚焦點之實驗............................................57 5-2 重建共軛聚焦點之實驗與模擬驗證與 PBR 分析 ..........................66 5-3 重建多個共軛聚焦點之排列圖像實驗....................................69 第六章 結論...............................................................73 參考文獻..................................................................75 中英文名詞對照表 .........................................................79 附錄......................................................................85

    1. S. Pastoor, and M. Wöpking, “3-D displays: A review of current technologies,” Displays 17, 100-110 (1997).
    2. T. Shibata, “Head mounted display,” Displays 23, 57-64 (2002).
    3. N. Cochrane, “VFX-1 Virtual Reality Helmet by Forte,” GameBytes, (1994).
    4. Wikipedia, “VFX1 Headgear,” https://en.wikipedia.org/wiki/VFX1_Headgear.
    5. W. Kruger, C. A. Bohn, B. Frohlich, H. Schuth, W. Strauss, and G. Wesche, “The responsive workbench: A virtual work environment,” Comput. 28, 42-48 (1995).
    6. J. A. Roese, “Liquid crystal stereoscopic viewer,” United States Patent, US4021846 (1977).
    7. C. Schurr, “Convergence Rule,” SAGE Publications, (1939).
    8. E. Dubois, “A projection method to generate anaglyph stereo images,” in 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings, 1661-1664 (2001).
    9. A. J. Woods, and C. R. Harris, “Comparing levels of crosstalk with red/cyan, blue/yellow, and green/magenta anaglyph 3D glasses,” Proc. SPIE 7524, Stereoscopic Displays and Applications XXI, 75240Q (2010).
    10. Y. Bastanlar, D. Canturk, and H. Karacan, “Effects of color-multiplex stereoscopic view on memory and navigation,” 2007 3DTV Conference, 1-4 (2007).
    11. J. Y. Lee, S.-H. Kim, D. W. Moon, and E. S. Lee, “Three-color multiplex CARS for fast imaging and microspectroscopy in the entire CHn stretching vibrational region,” Opt. Express 17, 22281-22295 (2009).
    12. K. E. Jachimowicz, and R. S. Gold, “Stereoscopic (3D) projection display using polarized color multiplexing,” Opt. Eng. 29, 838-843 (1990).
    13. Y. J. Wu, Y. S. Jeng, P. C. Yeh, C. J. Hu, and W. M. Huang, “20.2: Stereoscopic 3D display using patterned retarder,” SID Symp. Dig. Tech. Papers. 39, 260-263 (2008).
    14. G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer-tracking autostereoscopic 3D display systems,” Proc. SPIE 3012, Stereoscopic Displays and Virtual Reality Systems IV, 187 (1997).
    15. D. K. de Boer, M. G. Hiddink, M. Sluijter, O. H. Willemsen, and S. T. de Zwart, “Switchable lenticular based 2D/3D displays,” in Stereoscopic Displays and Virtual Reality Systems XIV(International Society for Optics and Photonics2007), 64900R (2007).
    16. Y. H. Tao, Q. H. Wang, J. Gu, W. X. Zhao, and D. H. Li, “Autostereoscopic three-dimensional projector based on two parallax barriers,” Opt. Lett. 34, 3220-3222 (2009).
    17. R. Y. Tsai, C. H. Tsai, K. Lee, C. L. Wu, L. C. D. Lin, K. C. Huang, W. L. Hsu, C. S. Wu, C. F. Lu, and J. C. Yang, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903 (2009).
    18. H. Higuchi, and J. Hamasaki, “Real-time transmission of 3-D images formed by parallax panoramagrams,” Appl. Opt. 17, 3895-3902 (1978).
    19. N. A. Dodgson, J. Moore, and S. Lang, “Multi-view autostereoscopic 3D display,” International Broadcasting Convention. Vol. 2. (1999).
    20. C. W. Shih, J. H. Wang, C. H. Ting, and Y. P. Huang, “ Floating 3D Image for High Resolution Portable Device Using Integral Photography Theory,” SID Symposium Digest of Technical Papers (2015).
    21. F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19, 9147-9156 (2011).
    22. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTiO3,” Appl. Phys. Lett. 9, 72-74 (1968).
    23. F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223-225 (1968).
    24. F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389-3396 (1969).
    25. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. i. steady state,” Ferroelectr. 22, 949960 (1979).
    26. A. Yariv, and D. M. Pepper, “Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing,” Opt. Lett. 1, 16-18 (1977).
    27. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46-51 (1982).
    28. J. W. Mark Cronin-Golomb, Baruch Fischer, and Amnon Yariv, “Exact solution of a nonlinear model of four-wave mixing and phase conjugation,” Opt. Lett. 7, 313-315 (1982).
    29. P. Yeh, “Two-Wave Mixing in Nonlinear Media,” IEEE J. Quant. Electronics 25, 484-519 (1989).
    30. R. A. Fisher, Optical Phase Conjugation (Academic Press, 1983).
    31. C. C. Sun, S. Yeh, M. W. Chang, and K. Y. Hsu, “Optimal incident conditions for a Cat-type self-pumped phase-conjugate mirror,” Appl. Opt. 31, 5769-5772 (1992).
    32. C. C. Sun, R. H. Tsou, W. Shen, H. H. Chan, J. Y. Chan, and M. W. Chan, “Shearing interferometer with a Kitty self-pumped phase-conjugate mirror,” Appl. Opt. 35, 1815-1819 (1996).
    33. B. Wang, C. C. Sun, W. C. Su, and A. E. Chiou, “Shift-tolerance property of an optical double-random phase-encoding encryption system,” Appl. Opt. 39, 4788-4793 (2000).
    34. H. F. Yau, H. C. Kung, H. Y. Lee, C. C. Sun, T. C. Chen, C. C. Chang, Y. P. Tong, and J. Chen, “Ordinary polarized phase conjugator using the photovoltaic effect,” Opt. Commun. 184, 257-263 (2000).
    35. C. C. Sun, and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253-1260 (2001).
    36. C. C. Sun, W. C. Su, B. Wang, and A. E. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209-224 (2001).
    37. W. C. Su, Y. W. Chen, Y. Ouyang, C. C. Sun, and B. Wang, “Optical identification using a random phase mask,” Opt. Commun. 219, 117-123 (2003).
    38. W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for random-phase-encrypted volume holograms,” Appl. Opt. 43, 1728-1733 (2004).
    39. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110-115 (2008).
    40. M. V. Gemert, S. L. Jacques, H. Sterenborg, and W. Star, “Skin optics,” IEEE Transactions on Biomedical Engineering 36, 1146-1154 (1989).
    41. M. Cui, and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444-3455 (2010).
    42. I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012).
    43. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
    44. D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2, 728-735 (2015).
    45. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583-10590 (2012).
    46. D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
    47. E. N. Leith, and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123-1128 (1962).
    48. E. N. Leith, and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53, 1377-1381 (1963).
    49. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
    50. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486-488 (1982).
    51. A. E. Chiou, T. Y. Chang, and M. Khoshnevisar, “A High-speed photorefractive phase conjugator with wide intensity dynamic range and wide field of view,” OSA Annual Meeting 15, 40 (1990).
    52. A. E. Chiou, “Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of microscopic objects,” Proc. IEEE 87, 2074-2085 (1999).
    53. I. M. Vellekoop, Controlling the propagation of light in disordered scattering media (2008).
    54. C. Gu, and P. Yeh, “Partial phase conjugation, fidelity, and reciprocity,” Opt. Commun. 107, 353-357 (1994).
    55. 陳瑋鑫,小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究,國立中央大學光電所碩士論文,中華民國一百零二年。
    56. 陳宇恆,基於數位光學相位共軛器浮空於多重鏡面之立體投影之研究,國立中央大學光電所碩士論文,中華民國一百零六年。
    57. 劉興晨,利用費奈爾反射結構提升多重鏡面立體投影系統之有效通道數量之研究,國立中央大學光電所碩士論文,中華民國一百零七年。
    58. Y. W. Yu, C. C. Sun, X. C. Liu, W. H. Chen, S. Y. Chen, Y. H. Chen, C. S. Ho, C. C. Lin, T. H. Yang, and P. K. Hsieh, “Continuous amplified digital optical phase conjugator for focusing through thick, heavy scattering medium,” OSA Continuum 2, 703-714 (2019).

    QR CODE
    :::