| 研究生: |
林志豪 Chih-hao Lin |
|---|---|
| 論文名稱: |
Ku-頻段微波覆晶積體化低雜訊放大器 Ku-band MIC Low-noise Amplifiers |
| 指導教授: |
辛裕明
Yue-ming Hsin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 低雜訊放大器 、覆晶 |
| 外文關鍵詞: | flip chip, LNA |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是利用覆晶的技術,來實現MIC的ku-頻段的低雜訊放大器。由於傳統的MIC電路,在高頻電路的應用上,頻段愈高而波長愈短,傳統的鎊線(Wire Bonding)在高頻操作時所產生寄生效應會影響整體電路的特性表現,不再適用。所以採用覆晶的方式來作為主動元件與被動電路的連結,根據先前學長們製作的金錫凸塊(Au-Sn bump)和建立的模型(model),觀察出在Ku頻段的寄生效應並不嚴重,因此延用之前實驗的數據和模型,來設計的低雜訊放大器。
在製作覆晶式的低雜訊放大器前,必需先確定金錫凸塊模型、RF pad 模型、被動元件。金錫凸塊模型是為了在模擬小訊號特性的需要,更精準的預測小訊號的特性。RF pad 模型的建立,是利用穩懋(WIN)半導體公司所建立的元件大訊號模型,並加上萃取的RF pad模型和金錫凸塊的模型,以模擬大訊號特性。最後被動元件的模擬,是使用安捷倫ADS momentum來進行電磁模擬,預測被動元件的高頻特性,有了以上的三項結果我們即可設計覆晶式低雜訊放大器。
最後完成了三個ku-頻段覆晶式的低雜訊放大器:(1)尺寸2×50 um單級低雜訊放大器其特性分別為 S11 = -12.6 dB、S22 = -18.9 dB、S21 = 9.22 dB、輸出P1dB功率 = 2.81 dBm、NF = 4.02 dB。(2)尺寸2×50 um兩級低雜訊放大器其特性分別為 S11 = -11.7 dB、S22 = -9.4 dB、S21 = 14.6 dB。(3)尺寸4×85um單級低雜訊放大器其特性分別為 S11 = -12 dB、S22 = -14.5 dB、S21 =9 dB、輸出P1dB功率= 3.9 dBm、NF = 3.3 dB。
In this thesis, microwave integrated circuits (MIC) low-noise amplifier(LNA) in ku-band are demonstrated with flip-chip assembled 0.15 um gate GaAs pseudomorphic high electron mobility transistors (p-HEMTs). When assembling MIC for operation at millimeter-wave frequencies, the use of flip-chip technology is preferable due to its short and stable interconnection as compared with wire bonding. To base on previously research in our lab, we had established the bump model and found relatively low assembly parasitic influence in ku-band.
Before to design LNA, we must establish bump model for small signal simulation and RF pad model with device model for large signal simulation. Passive device with using Agilent-ADS EM simulation were carried out. The ku-band MIC LNA designed using the results of the analysis have been fabricated.
Finally, we demonstrated three ku-band MIC LNAs, and there are one stage LNA with device size 2×50 um has 9.2 dB gain and 4 dB noise figure、two stage LNA with device size 2×50 um has 14.6 dB gain and one stage LNA with device size 4×85 um has 9 dB gain and 3.4 dB noise figure.
[1] Behzad Razavi, “Design of Analog CMOS Integrated Circuits”, McGRAW-HILL INTERNATIONAL EDITION Electrical Engineering Series, 2000
[2] 呂學士, 本城和彥, “微波通訊半導體電路,” 金華, 民國90年.
[3] D. M. Pozar, “Microwave Engineering, 2nd Ed.”, John Wilev & Sons, Inc., 1998
[4] THOMAS H.LEE, “THE DESIGN OF CMOS RADIO-FREQUENCY INTEGRATED CIRCUITS, 2nd Ed “, Cambridge University Press, 2004
[5] JERRY JORDNA, “GOLD STUD BUMPS IN FLIP-CHIP APPLICATIONS”, 2002 IEEE International Electronics Manufacturing Technology Symposium, San Jose , CA, July 2002.
[6] 李啟賢“利用覆晶技術與單石微波積體電路製作之Ka / V頻段放大器”碩士論文, 國立中央大學, 民國九十五.
[7] Y. Arai, M. Sato , H. T. Yamada, T. Hamada , K.Nagai and H.I.F, “60-GHz Flip-Chip Assembled MIC Design Considering Chip-Substrate Effect”, IEEE Trans. Microwave Theory Tech., vol. 45, pp. 2261-2266, Dec 1997.
[8] Chris Duff, Robin Sloan “Lumped Equivalent Circuit De-Embedding of GaAs Structures”, 2002 IEEE Electron Devices for Microwave and Optoelectronic Applications
[9] RAINEE N. SIMONS, “Coplanar Waveguide Circuits, Components, and Systems”, WILEY, 2002.
[10] C.Veyres and V.F.Hanna, ”Extension of the Application of Conformal Mapping Techniques to Coplanar Lines with Finite Dimension”, Int.J.Electron, Vol. 48, pp. 47-56, Jan.1980
[11] S.Gevorgain , L.J.P. Linner and E.L.Kollberg, ”CAD Models for Shielded Multilayered CPW”, IEEE Trans. Microwave Theory Tech, Vol. 43, pp. 772-779. Apr. 1995.
[12] 簡練, “共平面波導Ka 頻段低雜訊與功率放大器之研製”, 碩士論文,國立交通大學, 2000
[13] 袁杰,“高頻電路分析與設計“, 全威圖書有限公司, 1997
[14] K. Honjo and Y. Takayama, “GaAs FET untrabroad-band amplifier for Gbit/s data rate system,” IEEE Trans. MTT, vol. 29, pp. 629-636, July 1981
[15] Yusuke Inoue, M. Sato, “Toshihiro Ohki, Kozo Makiyama, A 90-GHz InP-HEMT Lossy Match Amplifier With a 20-dB Gain Using a Broadband Matching Technique“, IEEE J. Solid-State Circuits, vol. 40, Oct. 2005
[16] H. Shigematsu, N. Yoshida, M. Sato, T. Hirose, and Y. Watanabe,”45-GHz distributed amplifier with a linear 6-Vp-p output for a 40-Gb/s LiNbO modulator driver circuit,” in IEEE Int. GaAs Symp. Dig., vol. 1, pp. 137–140,June 2001 .
[17] M. Leich, M. Ludwig, H. Massler, A. Hulsmann, and M. Schlechtweg,“Two-stage ultra-broadband driver for optical modulator,” Electron.Lett., vol. 36, pp. 1862–1863, Oct. 2000.
[18] Kuo-Liang Deng and Tian-Wei Huang, “Design and Analysis of Novel High-Gain and Broad-Band GaAs pHEMT MMIC Distributed Amplifiers With Traveling-Wave Gain Stages”, IEEE Trans.Microwave Theory Tech, vol. 51, Nov. 2003
[19] Y. Baeyens, G. Georgiou, J. S. Weiner, A. Leven, V. Houtsma, P.Paschke, Q. Lee, R. F. Kopf, Y. Yang, L. Chua, C. Chen, C. T. Liu, and Y.-K. Chen, “InP D-HBT ICs for 40-Gb/s and higher bit rate lightwave transceivers,”IEEE J. Solid-StateCircuits, vol. 37, pp. 1152–1158,Sept. 2002.
[20] S. Masuda, T. Hirose, T. Takahashi, M. Nishi, S. Yokokawa, S. Iijima,K. Ono, N. Hara, and K. Joshin, “An over 110-GHz InP HEMT flip-chip distributed baseband amplifier with inverted microstrip line structure for optical transmission systems, in GaAs Symp. Dig., pp. 99–102, 2002.