| 研究生: |
陳聖鶴 Sheng-he Chen |
|---|---|
| 論文名稱: |
高壓貧油預混氫氣紊流燃燒速度量測和正規化及其與不同碳氫燃料之比較 Measurement and normalization of high-pressure lean premixed hydrogen turbulent burning velocities and their comparison with various hydrocarbon fuels |
| 指導教授: |
施聖洋
Shenq-yang Shy |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 紊流火焰速率 、正規化紊流燃燒速度 、火焰紊流雷諾數 、Karlovitz number 、Lewis number |
| 外文關鍵詞: | turbulent flame speed, normalized turbulent burning velocity, flame turbulent Reynolds number, Karlovitz number, Lewis number |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文量測高壓貧油預混氫氣/空氣( = 0.6)球狀紊焰的火焰速度,進一步地探討其可能存在之自我相似性,並與先前研究採用其他燃氣(如甲烷、丙烷、富氫等)之球狀紊焰和本生燈紊焰資料作比較。實驗利用實驗室已建立之高壓雙腔體爆炸設備來進行研究,雙腔體爐分別由一高壓保護腔體(外爐)與一3D高壓十字型燃燒器(內爐)所組成。高壓十字型燃燒器,乃由一大水平圓管與另兩垂直圓管焊接而成(從3個方向看均呈十字型),在垂直圓管上設有四個釋壓閥使其引燃爆炸時可處於等壓狀態,並在水平圓管兩端各設有一組旋轉風扇與空孔板。當兩風扇反向旋轉時,可於內爐中心區域產生一近似等向性紊流場,其方均根紊流擾動速度(u')可達8.4 m/s。本實驗使用貧油氫氣( = 0.6),其Lewis數(Le ≈ 0.58 ≪ 1),進行一系列不同壓力(p = 1 ~ 5atm)與紊流擾動速度(u′ = 0.8 ~ 4.0m/s)之燃燒實驗,並量測正規化紊流火焰速率[(1/S_L^b)(d<R>/dt)]與火焰紊流雷諾數(ReT,flame = u′<R>/)之關係,其中S_L^b為已燃氣之層流燃燒速度、<R>為火焰平均半徑、t為時間、(≈ SLL)為熱擴散係數、SL為密度校正後之未拉伸層流燃燒速度,而L為層流火焰厚度。我們同時量測正規化紊流燃燒速度ST/SL與紊流強度乘以壓力比值(u'/SL)(p/p0)之關係,其中ST為紊流燃燒速度、p為實驗之初始壓力與p0為一大氣壓。另外,也量測ST/u'與Karlovitz數(Ka)之關係,並與先前本實驗室團隊所得結果,含CH4/Air ( = 0.8, Le ≈ 0.98)、CH4/Air ( = 0.9, Le ≈ 0.997)和C3H8/Air ( = 0.7, Le ≈ 1.62)作比較。結果顯示,本實驗之數據與先前之數據,若進行適當之校正,彼此之間可以吻合,顯示正規化紊流燃燒速度之通式是有可能存在的。
此外,為了驗證球狀火焰與本生燈火焰在平均傳遞變數¯c=0.5火焰輪廓下,其S_(T,c ̅=0.5)值是否能夠互相吻合,我們以S_(T,c ̅=0.5)/S_L與(u'/SL)(p/p0)以及S_(T,c ̅=0.5)/u'與Ka之關係,分別與Kobayashi et al. (1996、1998、2005)以及Gülder et al. (2000、2009、2014)的本生燈火焰資料作比較。結果顯示,本實驗室之數據分別與Kobayashi et al.以及Gülder et al.之數據,在適當校正後可以吻合,適用於S_(T,c ̅=0.5)/S_L=〖C_1 [(u^'/S_L)(p/p_0)]〗^0.38或S_(T,c ̅=0.5)/u'=C_2 〖Ka〗^(-0.42)之通式,其中C1和C2為實驗常數。但是,值得一提的是,本實驗室團隊先前所獲之合成氣之數據(未報告於本論文),無法與前述之數據吻合,顯示前述正規化紊流燃燒速度通式並不適用於合成氣燃料,此仍為一待解的問題。
This thesis measures turbulent flame speeds of expending spherical lean premixed hydrogen/air mixtures (the equivalence ratio = 0.6) under high pressure conditions, further explores possible its self-similar turbulent expending flames, and compares with previous studies using different fuels (such as methane, propane, rich-hydrogen) of both spherical turbulent flames and Bunsen turbulent flames. Experiments are carried out in a high pressure double-chamber explosion facility that is consisted of a huge high-pressure safety vessel (outer chamber) and a 3D high-pressure cruciform burner (inner chamber). The high-pressure 3D cruciform burner is constructed by a large horizontal vessel which is welded by a vertical vessel and a horizontal vessel, forming a cruciform shape when viewed from all three directions. Upon explosion, four pressure release valves installed around the vertical vessel will be opened to release the pressure rise from the inner chamber so that combustion can be kept at constant pressure conditions. Using a pair of the identical frequency-controlled counter-rotating fan and perforated plate equipped at the two ends of the large horizontal vessel, an intense near-isotropic turbulent flow field can be generated in the central uniform region of the cruciform burner, where the root-mean-square turbulent fluctuation velocity (u') can be up to 8.4 m/s. In this study, lean H2/air mixtures ( = 0.6) with a Lewis number Le ≈ 0.58 ≪ 1 are applied over a wide range of u' vary from 0.8 m/s to 4.0 m/s. We measure the normalized turbulent flame speed [(1/S_L^b)(d<R>/dt)] as a function of a flame turbulent Reynolds number (ReT,flame = u′<R>/), where S_L^b is the laminar burning velocity at burn side, <R> is the flame mean radius, t is time, (≈ SLL)is thermal diffusivity, SL is the unstretched laminar burning velocity after density correction, and L is the laminar flame thickness. Also, we measure the relationships of the normalized turbulent burning velocity (ST/SL) with (u'/SL)(p/p0), where ST is the turbulent burning velocity, p is the initial pressure of the experiment, and p0 = 1 atm. Moreover, the relationships of ST/u' with Ka (Karlovitz number) are measured and analyzed with a comparison of previous data, such as CH4/Air ( = 0.8, Le ≈ 0.98), CH4/Air ( = 0.9, Le ≈ 0.997) and C3H8/Air ( = 0.7, Le ≈ 1.62) obtained by our group. It is found the present H2 data can be represented by previous general correlations when appropriate corrections are made.
In order to compare the data between spherical flames and Bunsen flames, we extract ST data at the mean progress variable ¯c=0.5 of the flame contour. It is found that the data of both spherical flames and Bunsen flames [Kobayashi et al. (1996、1998、2005) and Gülder et al. (2000、2009、2014)] can be represented by the relationships of S_(T,c ̅=0.5)/S_L=〖C_1 [(u^'/S_L)(p/p_0)]〗^0.38 or S_(T,c ̅=0.5)/u'=C_2 〖Ka〗^(-0.42), where C1 and C2 are experimental constants. However, we hasten to note that the previous data of syngas obtained by our laboratory team (not shown in this thesis), cannot be represented by the above general correlations. This is still an open question.
參考文獻
[1] F. A. Williams, Combustion Theory, Second Ed., Addison-Wesley, Redwood City, 1985.
[2] N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
[3] R. G. Abdel-Gayed, D. Bradley, M. Lawes,” Turbulent Burning Velocities: A General Correlation in Terms of Straining Rates”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 414, pp. 389-413, 1987.
[4] R. K. Cheng, I. G. Shepherd,” The influence of burner geometry on premixed turbulent flame propagation”, Combustion and Flame, Vol. 85, pp. 7-26, 1991.
[5] D. Bradley, A. K. C. Lau, M. Lawes,” Flame stretch rate as a determinant of turbulent burning velocity”, Philosophical Transactions: Physical Sciences and Engineering, Vol. 338, pp. 359-387, 1992.
[6] A. N. Linpatnikov, J. Chomiak,” Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations”, Progress in Energy and Combustion Science, Vol. 28, pp. 1-74, 2002.
[7] A. N. Linpatnikov, J. Chomiak,” Molecular transport effects on turbulent flame propagation and structure”, Progress in Energy and Combustion Science, Vol. 31, pp. 1-73, 2005.
[8] J. F. Driscoll,” Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities,” Progress in Energy and Combustion Science, Vol. 34, pp. 91-134, 2008.
[9] H. Kobayashi, H. Kawazoe,” Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames”, Proceedings of the Combustion Institute, Vol. 28, pp. 375-382, 2000.
[10] D. Bradley, M. Z. Haq, R. A. Hicks, T. Kitagawa, M. Lawes, C. G. W. Sheppard, R. Woolley,” Turbulent burning velocity, burned gas distribution, and associated flame surface definition”, Combustion and Flame, Vol. 133, pp. 415-430, 2003.
[11] R. K. Cheng, D. Littlejohn, P. A. Strakey, T. Sidwell,” Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions”, Proceedings of the Combustion Institute, Vol. 32, pp. 3001-3009, 2009.
[12] C. C. Liu, S. S. Shy, H. C. Chen, M. W. Peng,” On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure,” Proceedings of the Combustion Institute, Vol. 33, pp. 1293-1299, 2011.
[13] S. Daniele, P, Jansohn, J. Mantzaras, K. Boulouchos,” Turbulent flame speed for syngas at gas turbine relevant conditions”, Proceedings of the Combustion Institute, Vol. 33, pp. 2937-2944, 2011.
[14] C. C. Liu, S. S. Shy, M. W. Peng, C. W. Chiu, Y. C. Dong,” High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers”, Combustion and Flame, Vol. 159, pp. 2608-2619, 2012.
[15] S. Chaudhuri, F. Wu, D. Zhu, C. K. Law,” Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames”, Physical Review Letters, Vol. 108, pp. 044503-1-5, 2012.
[16] S. Chaudhuri, F. Wu, C. K. Law,” Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations”, Physical Review E, Vol. 88, pp. 033005-1-13, 2013.
[17] P. Tamadonfar, Ö. L. Gülder,” Flame brush characteristics and burning velocities of premixed turbulent methane/air Bunsen flames”, Combustion and Flame, Vol. 161, pp. 3154-3165, 2014.
[18] F. Wu, A. Saha, S. Chaudhuri, C. K. Law,” Propagation speeds of expanding turbulent flames of C4 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch-affected local extinction,” Proceedings of the Combustion Institute, Vol. 35, pp. 1501-1508, 2015.
[19] S. S. Shy, C. C. Liu, J. Y. Lin, L. L. Chen, A. N. Lipatnikov, S. I. Yang,” Correlations of high-pressure lean methane and syngas turbulent burning velocities: Effects of turbulent Reynolds, Damköhler, and Karlovitz numbers”, Proceedings of the Combustion Institute, Vol. 35, pp. 1509-1516, 2015.
[20] P. Venkateswaran, A. Marshall, J. Seitzman, T. Lieuwen,” Scaling turbulent flame speeds of negative Markstein length fuel blends using leading points concepts”, Combustion and Flame, Vol. 162, pp. 375-387, 2015.
[21] M. Ball, M. Wietschel,” The future of hydrogen – opportunities and challenges”, International Journal of Hydrogen Energy, Vol. 34, pp. 615-627, 2009.
[22] D. Bradley, P. H. Gaskell, X. J. Gu, A. Sedaghat,” Premixed flamelet modelling: Factors influencing the turbulent heat release rate source term and the turbulent burning velocity”, Combustion and Flame, Vol. 143, pp. 227-245, 2005.
[23] H. Kobayashi, T. Tamura, K. Maruta, T. Niioka, F. A. Williams,” Burning velocity of turbulent premixed flames in a high-pressure environment”, Symposium (International) on Combustion, Vol. 26, pp. 389-396, 1996.
[24] H. Kobayashi, Y. Kawabata, K. Maruta,” Experimental study on general correlation of turbulent burning velocity at high pressure”, Symposium (International) on Combustion, Vol. 27, pp. 941-948, 1998.
[25] A. Pocheau,” Scale invariance in turbulent front propagation,” Physical Review E, Vol. 49, pp. 1109-1122, 1994.
[26] B. Denet,” Frankel equation for turbulent flames in the presence of a hydrodynamic instability”, Physical review E, Vol. 55, pp. 6911-6916, 1997.
[27] M. Lawes, M. P. Ormsby, C. G. W. Sheppard, R. Woolley,” The turbulent burning velocity of iso-octane/air mixtures”, Combustion and Flame, Vol. 159, pp. 1949-1959, 2012.
[28] D. Bradley, M. Lawes, M. S. Mansour,” Correlation of turbulent burning velocities of ethanol–air, measured in a fan-stirred bomb up to 1.2 MPa”, Combustion and Flame, Vol. 158, pp. 123-138, 2011.
[29] T. Kitagawa, T. Nakahara, K. Maruyama, K. Kado, A. Hayakawa, S. Kobayashi,” Turbulent burning velocity of hydrogen–air premixed propagating flames at elevated pressures”, International Journal of Hydrogen Energy, Vol. 33, pp. 5842-5849, 2008.
[30] Ö. L. Gülder, G. J. Smallwood, R. Wong, D. R. Snelling, R. Smith, B. M. Deschamps, J.-C. Sautet,” Flame front surface characteristics in turbulent premixed propane/air combustion”, Combustion and Flame, Vol. 120, pp. 407-416, 2000.
[31] F. T. C. Yuen, Ö. L. Gülder,” Premixed turbulent flame front structure
investigation by Rayleigh scattering in the thin reaction zone regime”, Proceedings of the Combustion Institute, Vol. 32, pp. 1747-1754, 2009.
[32] F. T. C. Yuen, Ö. L. Gülder,” Turbulent premixed flame front dynamics and implications for limits of flamelet hypothesis”, Proceedings of the Combustion Institute, Vol. 34, pp. 1393-1400, 2013.
[33] J. Wang, M. Zhang, Y. Xie, Z. Huang, T. Kudo, H. Kobayashi,” Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0 MPa,” Experimental Thermal and Fluid Science, Vol. 50, pp. 90-96, 2013.
[34] H. Kobayashi, K. Seyama, H. Hagiwara, Y. Ogami,” Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature”, Proceedings of the Combustion Institute, Vol. 30, pp. 827-834, 2005.
[35] Y. C. Lin, P. Jansohn , K. Boulouchos,” Turbulent flame speed for hydrogen-rich fuel gases at gas turbine relevant conditions”, International Journal of Hydrogen Energy, Vol. 39, pp. 20242-20254, 2014.
[36] D. Bradley, M. Lawes, K. Liu, M. S. Mansour,” Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures,” Proceedings of the Combustion Institute, Vol. 34, pp. 1519-1526, 2013.
[37] 黃信閔,”預混紊流球狀火焰速率與自我相似傳播之量測分析”,國立中央大學機械工程研究所,碩士論文,2013年。
[38] 陳立龍,”高壓預混紊流球狀擴張火焰之自我加速性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le > 1)”,國立中央大學機械工程研究所,碩士論文,2014年。
[39] F. Wu, G. Jomaas, C. K. Law,” An experimental investigation on self-acceleration of cellular spherical flames,” Proceedings of the Combustion Institute, Vol. 34, pp. 937-945, 2013.
[40] W. K. Kim, T. Mogi, K. Kuwana, R. Dobashi,” Self-similar propagation of expanding spherical flames in large scale gas explosions,” Proceedings of the Combustion Institute, Vol. 35, pp. 2051-2058, 2015.
[41] D. Bradley, T. M. Cresswell, J. S. Puttock,” Flame acceleration due to flame-induced instabilities in large-scale explosions,” Combustion and Flame, Vol. 124, pp. 551-559, 2001.
[42] T. Kitagawa, T. Ogawa, Y. Nagano,” The effects of pressure on unstretched laminar burning velocity, Markstein length and cellularity of spherically propagating laminar flames,” COMODIA, August 2-5, Japan, 2004.
[43] H. Kido, M. Nakahara,” A model of turbulent burning velocity taking the preferential diffusion effect into consideration,” JSME International Journal. Ser. B, Fluids and Thermal Engineering, Vol. 41(3), pp. 666-673, 1998.
[44] C. K. Law,” Dynamics of stretched flames,” Proceedings of the Combustion Institute, Vol. 22, pp. 1381-1402, 1988.
[45] G. H. Markstein, Nonsteady Flame Propagation, Pergamon, 1964.
[46] 林文基,”甲烷與丙烷預混紊流燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,1999年。
[47] 彭明偉,”中央引燃往外傳播預混火焰在高壓條件下之層流和紊流燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,2010年。
[48] 董益銍,”淨煤氣化合成氣貧油可燃極限與燃燒速度量測:壓力和紊流效應”,國立中央大學機械工程研究所,碩士論文,2012年。
[49] C. Tang, Z. Huang, C. Jin, J. He, J. Wang, X. Wang, H. Miao,” Laminar burning velocities and combustion characteristics of propane–hydrogen–air premixed flames,” International Journal of Hydrogen Energy, Vol. 33, pp. 4906-4914, 2008.
[50] S. K. Marley, W. L. Roberts,” Measurements of laminar burning velocity and Markstein number using high-speed chemiluminescence imaging,” Combustion and Flame, Vol. 141, pp. 473-477, 2005.
[51] Z. Huang, Y. Zhang, K. Zenga, B. Liu, Q. Wang, D. Jiang,” Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures, Combustion and Flame, Vol. 146, pp. 302-311, 2006.
[52] R. Borghi,” On the Structure and Morphology of Turbulent Premixed Flames,” C. Casci Ed., pp. 117-138, New York, Plenum, 1985.
[53] N. Peters,” Laminar Flamelet Concepts in Turbulent Combustion,” Proceedings of the Combustion Institute, Vol. 21, pp. 1231-1250, 1986.
[54] K. N. C. Bray,” Turbulent Flows with Premixed Reactants,” Turbulent Reacting Flows, P. A. Libby & F. A. Williams Eds., pp. 115-183, New York, Springer-Verlag, 1980.
[55] G. Darrieus,” Propagation d'un front de flamme,” La Technique Moderne, Paris, 1938.
[56] L. D. Landau,” On the theory of slow combustion,” Acta Physicochim URSS, Vol. 19, pp. 77-85, 1944.
[57] A. Lipatnikov, Fundamentals of permixed turbulent combustion, CRC Press, 2012.
[58] A. A. Burluka, A. M. T. El-Dein Hussin, C. G. W. Sheppard, K. Liu, V. Sanderson,” Turbulent combustion of hydrogen–CO mixtures,” Flow Turbulence Combustion, Vol. 86, pp. 735-749, 2011.
[59] C. K. Law, Combustion physics, Cambridge university press, New York, 2006.
[60] S. S. Shy, W. K. I, M. L. Lin,” A new cruciform burner and its turbulence measurements for premixed turbulent combustion study,” Experimental Thermal and Fluid Science, Vol. 20, pp105-114, 2000.
[61] C. C. Liu, S. S. Shy, C. W. Chiu, M. W. Peng, H. J. Chung,” Hydrogen/carbon monoxide syngas burning rates measurements in high-pressure quiescent and turbulent environment,” International Journal of Hydrogen Energy, Vol. 36, pp. 8595-8603, 2011.
[62] W. K. Metcalfe, S. M. Burke, S. S. Ahmed, H. J. Curran,” A Hierarchical and Comparative Kinetic Modeling Study of C1−C2 Hydrocarbon and Oxygenated Fuels,” International Journal of Chemical Kinetics, Vol. 45, pp. 638-675, 2013.