跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭善尹
Shan-Yin Hsiao
論文名稱: 側聚光型太陽能電池系統之容忍角增益研究
指導教授: 韋安琪
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 99
中文關鍵詞: 聚光型太陽能電池系統聚光元件側聚光元件容忍角
外文關鍵詞: Concentrated photovoltaic system, Concentrator, Planar solar Concentrator, Acceptance angle
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於傳統聚光型太陽能電池系統之體積龐大、組裝與對位容忍度低。本論文設計側聚光元件,並將太陽能電池晶片安置於聚光元件的側面,可使系統薄型化,提升組裝及對位容忍度,而適用於平板型產品。但因此類側聚光型系統之容忍角小,以致應用受限。
    為了改善側聚光型太陽能電池系統之容忍角,本論文提出兩種類型之側聚光元件:第一類為V型溝槽結構之側聚光元件,第二類則為拋物面溝槽結構之側聚光元件。首先,使用光學軟體LightTools進行設計模擬,得第一類之側聚光元件容忍角為±4.5度;第二類之側聚光元件容忍角為±6.3度,容忍角較第一類側聚光元件提升了1.8度。接著,以V型溝槽結構作為聚光元件之底部反射結構,並實際製作出成品,再利用太陽光模擬器與太陽能電池分析儀進行實驗量測,以驗證此設計的可行性。而所測得的容忍角為±4.4度。最後,將實驗結果與模擬結果進行分析比較,以探討效率損失的原因。


    Compared with the bulky volume and the low tolerance in alignment of conventional concentrated photovoltaic systems (CPVs), the design in this research with the solar cells placed at the both side walls of the planar solar concentrator (PSC), can be thin and has the enhanced tolerance of alignment. Although such a PSC can be used for flat products, its acceptance angle is around only ±2^°, and the application is limited.
    In order to improve the acceptance angle of the planar solar concentrator (PSC). Two types of the planar solar concentrator (PSC) are purposed in this research. The first type uses the V-shape grooves, and the second type uses the parabolic grooves. First, we used LightTools to design and analyze the system. In simulation, the acceptance angles of the first and the second type have achieved ±〖4.5〗^° and ±〖6.3〗^°, respectively. Experimentally, the PSC with the V-shape grooves as the bottom reflective surface was fabricated. After the designed sample was fabricated by CNC machining, we used the solar simulator and the solar module analyzer in the measurement to verify this design. The factors between experimental result, and simulation result, were then analyzed, while the acceptance angle achieved the value of ±〖4.4〗^°.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章、緒論 1 1-1研究背景 1 1-2 文獻回顧 4 1-3 研究動機與目的 10 1-4 研究方法與流程 11 1-5 論文架構 12 第二章、基礎理論與原理 13 2-1 幾何光學理論 13 2-2 菲涅爾損失(Fresnel Loss) 16 2-3 菲涅爾反射式太陽能集光器 18 2-4 拋物面反射式太陽能集光器 20 2-5 小結 22 第三章、設計與模擬 23 3-1 設計理念 23 3-2 設計流程 25 3-3 底部V溝反射斜面設計 26 3-4 底部V溝反射斜面之光學模擬 32 3-5 底部V溝反射面為斜面之側聚光元件容忍角分析 35 3-6 底部V溝拋物反射面設計 37 3-7 底部V溝拋物面之光學模擬 41 3-8 底部V溝反射面為拋物面之側聚光元件容忍角分析 48 3-8 小結 50 第四章、實驗方法與結果討論 51 4-1 實驗設備 51 4-2 實驗方法 56 4-3 實驗結果 58 4-3-1 太陽能電池基板量測 58 4-3-2 側聚光太陽能電池系統量測 62 4-3-3 側聚光太陽能電池系統之容忍角量測 67 4-4 結果與討論 68 4-4-1 誤差來源 68 4-4-2 容忍角誤差 76 4-5 小結 77 第五章、結論與未來展望 78 5-1 結論 78 5-2 未來展望 79 參考文獻 80

    [1] W. Palz, Power for the World: The Emergence of Electricity from the Sun. 1th, Pan Stanford Publishing (2010).
    [2] G. A. Gueymard, “The sun’s total and spectral irradiance for solar energy applications and solar radiation models,” Solar Energy 76, 423-453 (2004).
    [3] S.Bouchard, and S. Thibault, “Planar waveguide concentrator used with a seasonal tracker,” Optics Express, 51, 6848-6854 (2012).
    [4] V. Zagolla, D. Domine, E. Tremblay, and C. Moser, “Self-tracking solar concentrator with an acceptance angle of 32°,” Optics Express, 22, A1880-A1894 (2014).
    [5] R. S. Hedge, H. S. Chu, K. Ong, L. K. Bera, and C. E. Png, “Periodic microstructures for improved lens-to-waveguide coupling efficiency in microlens array planar solar concentrators,” Joumal of Photonics for Energy, SPIE, 5, 052099 (2015).
    [6] N. H. Vu, and S. Shin, “A Concentrator Photovoltaic System Based on a Combination of Prism-Compound Parabolic Concentrators,” Energies, 9, 1-13 (2016).
    [7] A. A. Mohamad, “High efficiency solar air heater,” Solar Energy, 60, 71–76 (1997).
    [8] E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Solar Energy Materials, and Solar Cells, 93, 1182–1194 (2009).
    [9] 屋頂太陽能發電,取自: 陽光屋頂百萬座
    http://mrpv.org.tw/showpiece.
    [10] H. M. Steinhagen, and F. Trieb, “Concentrating Solar Power: A Review of the Technology,” Ingenia Inform QR Acad Eng, 18, 43-50 (2004).
    [11] G. Z ubi, J. L. B. Agustin, and G. V. Fracastoro, “High concentration photovoltaic systems applying III–V cells,” Renewable and Sustainable Energy Reviews, 13, 2645-2652 (2009).
    [12] D. Feuermann, and J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Solar Energy, 70, 423-430 (2001).
    [13] T. Gu, G. Agrawal, A. Vessey, W. C. Sweatt, B. H. Jared, J. L. Cruzcampa, R. Goeke, W. K. Miller, D. L. Zamora, E. Langlois, M. Okandan, G. N. Nielson, and M. W. Haney, “Micro-concentrator module for Microsystems-Enabled Photovoltaics: Optical Performance Characterization, Modelling and Analysis,” Photovoltaic Specialist Conference, IEEE, 1-5 (2015).
    [14] J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nature communications, 6, 1-8 (2015).
    [15] J. M. Castro, D. Zhan, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” APPLIED OPTICS, 49, 858-870 (2010).
    [16] Plesniak, R. Jones, J. Schwartz, G. Martins, J. Hall. A. Narayanan. D.Whelan, P. Benitez, J. C. Minano, A. Cvetkovic, M. Hernandez, O. Dross, and R. Alvarez, “High performance concentrating photovoltaic module designs for utility scale power generation,” Joumal of Photonics for Energy, SPIE, 7407, 740704 (2009).
    [17] J. Chaves, “Introduction to nonimaging optics,” 2th edition, CRC Press, (2015).
    [18] P. Benitez, J. C. Miñano, P. Zamora1, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernandez, “High performance Fresnel-based photovoltaic concentrator,” Optics Express, 18, A25-A40 (2010).
    [19] K. K. Chong, T. K. Yew, C. W. Wong, M. H. Tan, W. C. Tan, A. C. Lai, B. H. Lim, S. L. Lau, and F. A. Rahman, “Dense-array concentrator photovoltaic system using non-imaging dish concentrator and crossed compound parabolic concentrator,” AIP Conference Proceedings, 1657, 030009 (2014).
    [20] J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Optics Express, 18, 1122-1133 (2010).
    [21] P. Xie, H. Lin, Y. Liu, and B. Li, “Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers,” Optics Express, 22, A1389-A1398 (2014).
    [22] 陳自榮,“側聚光型太陽能電池系統之聚光元件設計與製作”,國立中央大學機械工程學系碩士論文,2015年。
    [23] E. Hecht, “Optics,” 4th edition, Addison-Wesley, (2002).
    [24] B. S. Negi, T. C. Kandpal, and S. S. Mathur, “Design and Performance Characteristics Of Concentrator With A Flat Vertical Absorber,” Solar & Wind Technology, 7, 379-392 (1990).
    [25] Web page from: Newport Inc :
    http://www.newport.com/p/94021A.
    [26] Web page from: International Electrotechnical Commission(IEC) :
    http://webstore.iec.ch/publication/3880.
    [27] Web page from: OPHIR Inc :
    http://www.ophiropt.com.
    [28] Web page from: TES Inc :
    http://www.tes.com.tw/product_detail.asp?seq=90.
    [29] Web page from: Unice E-O Services Inc :
    http://www.unice.com.tw/modules/produce/index.php?op=produce&cid=1432.
    [30] Web page from: ARIMA Group Inc :
    http://www.arima.com.tw/group1-detail.php?index_m1_id=1&index_m2_id=6&index
    _id=18#parentHorizontalTab3.

    QR CODE
    :::