| 研究生: |
林俊宏 Jun-Hung Lin |
|---|---|
| 論文名稱: |
不同電極於HfO2薄膜上之電阻轉換現象 Resistive switching of HfO2 layer with different electrodes |
| 指導教授: |
周正堂
Cheng-tung Chou 謝健 Jiann Shieh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 電阻式記憶體 、電阻轉換現象 |
| 外文關鍵詞: | RRAM, HfO2, Resistive switching |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電阻式記憶體(RRAM)除了具有高密度、低成本、低耗能、操作速度快、保存資料能力佳等優點外,構造簡單也是它的一大特色,一般以金屬/絕緣層/金屬的MIM結構為主。而本實驗更進一步簡化了製程,發展出金屬/絕緣層/半導體的MIS結構。
本實驗使用MOCVD方式沉積不同厚度的HfO2,藉由鍍製不同上電極(TiN/Ti, Ni)於HfO2薄膜上,分別得到bipolar及nonpolar兩種不同的電阻轉換特性。由此可知,電阻轉換特性受電極影響而有不同。以TiN/Ti為上電極之元件,在HfO2厚度大於50 nm以上,可得到bipolar的電阻轉換特性,而以Ni為上電極之元件,在HfO2厚度介於10 nm ~ 50 nm間皆可得到nonpolar的電阻轉換特性。藉由電性量測及物性分析等方式,得到以TiN/Ti為上電極bipolar特性的元件,主要是以氧空缺方式形成filament進行傳導,而以Ni為上電極nonpolar特性的元件,則主要是以Ni金屬形成filament進行傳導。除此之外,我們更進一步的建立其電阻轉換機制。
The resistance switching random access memory (RRAM) has the advantages of high density, low cost, low energy operation, fast operating speed, good retention, and simple structure. In general, RRAM is characterized with a metal-insulator-metal (MIM) structure. Here we develop a metal-insulator-semiconductor (MIS) structure, which is more compatible with silicon process than MIM structure.
MOCVD is used to deposit different thickness of the insulator layer HfO2. With different electrodes (TiN/Ti, Ni) on the HfO2, we observed different resistance switching characteristics, bipolar and nonpolar switchings, which suggests that the resistance switching characteristic depends on the electrode materials strongly. According to the electrical and structural characterizations, oxygen vacancy plays a role of conducting filament in HfO2 for bipolar resistive-switching when using TiN/Ti electrode. On the other hand, Ni filament contributes to the nonpolar switching with Ni electrode. We also established the possible resistance switching mechanism in detail.
[1]R. Waser , Nanotechnology, Vol.3 , Wiley-VCH,
Weinhein 2008.
[2]余昭倫,《綜觀新世代記憶體-相變化記憶體》,Digitimes技
術IT(2006).
[3]簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,《先進
記憶體簡介》,國研科技創刊號.
[4]R. Waser, R. Dittmann, G. Straikov, and K. Szot,
“Redox-Based Resistive Switching Memories - Nanoionic
Mechanisms, Prospects, and Challenges”, Adv. Mater.
2632(2009).
[5]S. Seo, M, J. Lee, D. H. Seo, E. J. Jeoung, D. S.
Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim,
I. S. Byun, J. S. Kim, J. S. Choi and B. H. Park,
“Reproducible resistance switching in polycrystalline
NiO films”, Appl. Phys. Lett. 85, 5655(2004).
[6]I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo,
D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K.
Yoo , U-In Chung, and J. T. Moon, “Highly Scalable
Non-volatile Resisitive Memory using Simply Binary
Oxide Driven by Asymmetric Unipolar Voltage Pulses”
Tech. Dig. - Int. Electron Devices Meet. 2004, 587
(2004).
[7]S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-
pulse-induced reversible resistance change effect in
magnetoresistive films”, Appl. Phys. Lett. 76, 2749
(2000).
[8]A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura
“Hysterestic current-voltage characteristics and
resistance switching at a rectifying
Ti/Pr0.7Ca0.3MnO3 interface”Appl. Phys. Lett. 85,
4073(2004).
[9]A. Beck, J. G. Bednorz, CH. Gerber, C. Rossel and D.
Widmer, “Reproducible switching effect in thin oxide
films for memory applications”, Appl. Phys. Lett.
77, 139(2000).
[10]C. Rossel, G. l. Meijer, D. Bre’maud, and D.
Widmer, “Electrical current distribution across a
metal-insulator-metal structure during bistable
switching”, App. Phys. Lett. 90, 2892(2001).
[11]L. Ma, J. Liu, S. Pyo, and Y. Yang, “Organic
bistable light-emitting devices”, Appl. Phys. Lett.
80, 362(2002).
[12]L. P. Ma, J. Liu, and Y. Yang, “Organic electrical
bistable devices and rewritable memory cells”,
Appl. Phys. Lett. 80, 2997(2002).
[13]C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S.
Zhao, and C. S. Hwang, “Identification of a
determining parameter for resistive switching of
TiO2 thin films”,Appl. Phys. Lett. 86, 262907
(2005).
[14]S. Kim, I. Byun, I. Hwang, J. Kim, J. Choi, B. H.
Park, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, Y. S.
Joung, and I. K. Yoo, “Giant and Stable
Conductivity Switching Behaviors in ZrO2 Films
Deposited by Pulsed Laser Depositions ”, Jpn. J.
Appl. Phys. 44 L345 (2005).
[15]H. B. Lv, M. Yin, Y. L. Song, X. F. Fu, L. Tang, P.
Zhou, C. H. Zhao, T. A. Tang, B. A. Chen, and Y. Y.
Lin, “Forming Process Investigation of CuxO Memory
Films”, IEEE Electron Device Lett., 29 (1), 47-79
(2008).
[16]Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S.
Muraoka, S. Mitani, S. Fujii, K. Katayama, M.
Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y.
Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma,
K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K.
Horiba, H. Kumigashira, and M. Oshima, “Highly
Reliable TaOx ReRAM and Direct Evidence of Redox
Reaction Mechanism”, Tech. Dig. - Int. Electron
Devices Meet. 2008, 293 (2008).
[17]I. G. Baek, D. C. Kim, M. J. Lee, H.-J. Kim, E. K.
Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H.
Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim,
I. K. Yoo, U.-I. Chung, J. T. Moon, and B. I. Ryu,
“Multi-layer Cross-point Binary Oxide Resistive
Memory (OxRRAM) for Post-NAND Storage Application”,
Tech. Dig. - Int. Electron Devices Meet. 2005, 750
(2005).
[18]H. Y. Lee, P. S. Chen,T. Y. Wu, Y. S. Chen, C.C.
Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien,
and M.-J. Tsai, “Low Power and High Speed Bipolar
Switching with A Thin Reactive Ti Buffer Layer in
Robust HfO2 Based RRAM”, - Int. Electron Devices
Meet.2008, 17(2008).
[19]Y. Wang, Q. Liu, S. Long, W. Wang, Q. Wang, M.
Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang and M. Liu,
“Investigation of resistive switching in Cu-doped
HfO2 thin film for multilevel non-volatile memory
applications”, Nanotechnology 21, 045202(2010).
[20]R. Waser, M. Aono, “Nanoionics-based resistive
switching memories”,Nature Materials, Vol.6,
November 833(2007).
[21]H. Huang, W. Shih, and C. La, “Nonpolar resistive
switch in the Pt/MgO/Pt nonvolatile memory device”,
Appl. Phys. Lett. 96(2010.)
[22]A. Baikalov, Y. Q. Wang, B. Shen et al., “Field-
driven hysteretic and reversible resistive switch at
the Ag-Pr0.7Ca0.3MnO3 interface”, Appl. Phys. Lett.
83(5), 957(2003).
[23]R. Waser, “Resistive non-volatile memory devices”,
Microelectronic Engineering, 86, 1925(2009).
[24]B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S.
Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R.
Waser, B. Reichenberg and S. Tiedke, “Resistive
switching mechanism of TiO2 thin films grown by
atomic-layer deposition”, J. Appl. Phys. 98, 033715
(2005).
[25]A. Sawa, “Resistive switching in transition metal
oxides”, materialstoday, Vol 11, 28(2008).
[26]M. N. Kozicki, M. Yun, L. Hilt and A. Singh,
“Applications of ptogrammable resistance changes in
metal-doped chalcogenides”,Electrochem. Soc. 298
(1999).
[27]R. Waser, “Electrochemical and Thermochemical
Memories”, IEDM, 289(2008).
[28]Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng,
“Fully Room-Temperature-Fabricated Nonvolatile
Resistive Memory for Ultrafast and High-Density
Memory Application ”, Nano Letters, Vol.9, 1636
(2009).
[29]T. Baiatu, R. Waser and K. Hardtl, “DC electrical
degradation of perovskite-type titanates : III. A
model of the mechanism”, J. Am. Cream. Soc. 73, 1663
(1990).
[30]N. Xu, B. Gao, L. F. Liu, B. Sun, X. Y. Liu, R. Q.
Han, J. F. Kang, and B. Yu, “A Unified Physical
Model of Switching Behavior in Oxide-Based
RRAM ”,VLSI, 100(2008).
[31]D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H.
Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S.
Han, M. Kim and C. S. Hwang, “Atomic structure of
conducting nanofilaments in TiO2 resistive switching
memory”, Nature nanotechnology, 148(2010).
[32]沈志彥, “MOCVD high-k Oxide Intruduction”, 國家奈米
元件實驗室.
[33]G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-
k gate dielectrics: Current status and materials
properties considerations”, J. Appl. Phys. 89, 5243
(2001).
[34]陳貞夙, 江佩錞, 林志謀, 鄭崇銘, 顏志坤,“積體電路新型
閘極疊層之材料研發與界面研究(2/2)研究成果報告”, 國立
成功大學材料科學及工程學系.
[35]N. MIYATA, M. ICHIKAWA, T. NABATAME, T. HORIKAWA and
A. TORIUMI, “Thermal Stability of a Thin
HfO2/Ultrathin SiO2/Si Structure : Interfacial Si
Oxidation and Silicidation”, Jpn. J. Appl. Phys. 42
L138 (2003).
[36]Y. C. Yang, F. Pan and F. Zeng , “Bipolar
resistance switching in high-performance Cu/ZnO :
Mn/Pt nonvolatile memories: active region and
influence of Joule heating”, New Journal of Physics
12, 023008(2010).
[37]Y. He, Z. Li, H. Qi, W. Gao, “Standard free energy
change of formation per unit volume : a new
parameter for evaluating nucleation and growth of
oxides, sulphides, carbides and nitrides”, Mat.
Res. Inn., 157(2007).