| 研究生: |
廖敦佑 Tun-Yu Liao |
|---|---|
| 論文名稱: |
福爾摩沙衛星二號遙測照相儀之在軌相互輻射校正 In-orbit Radiometric Cross-calibration of FORMOSAT-2 RSI |
| 指導教授: |
陳明桂
Ming-Quey Chen 林唐煌 Tang-Huang Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 福爾摩沙衛星二號 、大地衛星八號 、在軌絕對輻射校正 、相互校正 、輻射轉換係數 |
| 外文關鍵詞: | FORMOSAT-2 RSI, Landsat-8 OLI, In-flight absolutely radiometric calibration, Cross-calibration, Radiometric conversion coefficient |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在於建構利用大地衛星八號(Landsat-8, L-8)搭載之影像儀(Operational Land Imager, OLI)所攝得之影像來對福爾摩沙衛星二號(簡稱福衛二號)上之遙測照相儀(Remote Sensing Instrument, RSI)進行相互輻射校正之方法,以取得正確之輻射轉換係數。福衛二號為我國第一顆光學遙測衛星,於西元2004年5月21日升空。其中搭載之遙測酬載為RSI。福衛二號升空及運作至今已超過十年,超出了其原訂僅為五年之任務壽命。因此,為維持RSI所觀測到之大氣層頂輻射率準確度,須對RSI進行絕對輻射校正。於校正場址之挑選,本研究採用國際上常用之非洲撒哈拉荒漠(Sahara Desert)、美洲索諾蘭荒漠(Sonoran Desert)與美國內華達與加州地區荒漠等場址。並參考頻段相近之OLI影像,將OLI影像提供之大氣層頂輻射率輸入輻射傳送模式中(6SV4.1),進行大氣校正,以取得地表反射率,並將地表反射率輸入輻射傳送模式中,搭配當時福衛二號之觀測幾何、頻寬等條件,模擬RSI所觀測之大氣層頂輻射率。最後,將RSI影像之灰階值與模擬所得之RSI觀測輻射率進行統計迴歸,即可得出輻射轉換係數。研究結果顯示,於大部分之光學頻道,本文之校正結果與最新一期太空中心之校正結果和福衛二號發射前於實驗室內所測得之輻射轉換係數差異接近,可達±5%以內,代表本研究所建構之絕對輻射校正法具極高之可行性。
FORMOSAT-2 satellite (FS-2) was launched in May, 2004. It is the first Earth observation satellite operated by the National Space Organization (NSPO) of Taiwan. The main payload housed in FS-2 is Remote Sensing Instrument (RSI) with high spatial resolution. Landsat-8 (L-8) is an American Earth observing satellite launched in February 2013 quite recently. The main sensor on L-8 is Operational Land Imager (OLI). For any optical sensors, ensuring the accurate radiance observing is the most important issue for the applications to the scientific researches and environmental monitoring. Since RSI is operated more than 10 years, the optical characters may be altered. Therefore, the goal in this research is to construct a cross-calibration process and validate it by calibrating radiometric coefficients of FS-2 RSI sensor by using L-8 OLI image as a reference. For FS-2 RSI sensor, OLI is not only a new and well calibrated sensor but also use the similar spectral bands and bandwidth which can provide a credible data for calibrating RSI. The desert areas are selected for the cross-calibration in this study, including Sahara Desert in Africa, Sonoran Desert and deserts in Nevada and California in America. Those sites are usually used in other papers as a satellite sensor calibration site. The radiative transfer code, Second Simulation of the Satellite Signal in the Solar Spectrum version 4.1 (6SV4.1) is employed to drive land surface reflectance and the radiance RSI observed on the top of atmosphere. Eventually, the physical gains of RSI can be figured based on the relationship between observed radiance and the digital number. The results indicate that the differences of the radiometric conversion coefficients are quite similar to the dim file provided by NSPO. The differences can reach in ±5% in most spectral bands.
1. 吳岸明, & 張桂祥. (2014). 福衛二號影像處理系統研發之回顧與展望. 航測及遙測學刊, 18(1), 1-12.
2. 林唐煌、劉振榮、李國光、林孟岳、張國恩、連偉宏和廖敦佑(民103),福爾摩沙五號衛星光學遙測酬載之在軌輻射校正先期規劃與研究,財團法人國家實驗研究院國家太空中心委託研究計畫(編號:NSPO-S-103077),未出版。
3. 林唐煌、劉振榮、廖敦佑和曾聖凱(民104),福爾摩沙五號光學遙測酬載之特定目標校正(Vicarious Calibration)與相互校正(Cross Calibration)方法之規劃與研究,財團法人國家實驗研究院國家太空中心委託研究計畫(編號:NSPO-S-104096),未出版。
4. 曾忠一(1988),大氣衛星遙測學,渤海堂文化事業公司,臺灣臺北。
5. 福爾摩沙衛星二號(無日期),民104年12月7日,取自財團法人國家實驗研究院國家太空中心網頁:http://www.nspo.narl.org.tw/2011/tw/projects/FORMOSAT-2/program-description.html
6. Angal, A., Chander, G., Xiong, X., Choi, T., & Wu, A. (2011). Characterization of the Sonoran desert as a radiometric calibration target for Earth observing sensors. Journal of Applied Remote Sensing, 5(1), 059502-059502.
7. Arai, K. (2007). Vicarious calibration of the solar reflection channels of radiometers onboard satellites through the field campaigns with measurements of refractive index and size distribution of aerosols. Advances in Space Research, 39(1), 13-19.
8. Arai, K. (2013). Vicarious Calibration Based Cross Calibration of Solar Reflective Channels of Radiometers Onboard Remote Sensing Satellite and Evaluation of Cross Calibration Accuracy through Band-to-Band Data Comparisons.
9. Barnes, R. A., Eplee, R. E., Patt, F. S., & McClain, C. R. (1999). Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements. Applied Optics, 38(21), 4649-4664.
10. Biggar, S. F., Slater, P. N., & Gellman, D. I. (1994). Uncertainties in the in-flight calibration of sensors with reference to measured ground sites in the 0.4-1.1 μm range. Remote Sensing of Environment, 48(2), 245-252.
11. Chander, G., Helder, D. L., Markham, B. L., Dewald, J. D., Kaita, E., Thome, K. J., ... & Ruggles, T. (2004). Landsat-5 TM reflective-band absolute radiometric calibration. Geoscience and Remote Sensing, IEEE Transactions on, 42(12), 2747-2760.
12. Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), 893-903.
13. Chern, J. S., & Lin, S. F. (2009). In-orbit performance verification of FORMOSAT-2---A look back. Journal of Aeronautics, Astronautics and Aviation. Series A, 41(3), 203-209.
14. CNES. (2011). Absolute Calibration of Formosat-2 Using Desert Site December 2011 Update.
15. CNES. (2014). Absolute Calibration of Formosat-2 Using Desert Site June 2014 Update.
16. Czapla-Myers, J., McCorkel, J., Anderson, N., Thome, K., Biggar, S., Helder, D., ... & Mishra, N. (2015). The ground-based absolute radiometric calibration of Landsat 8 OLI. Remote Sensing, 7(1), 600-626.
17. Dinguirard, M., & Slater, P. N. (1999). Calibration of space-multispectral imaging sensors: A review. Remote Sensing of Environment, 68(3), 194-205.
18. Flood, N. (2014). Continuity of reflectance data between Landsat-7 ETM+ and Landsat-8 OLI, for both Top-of-Atmosphere and surface reflectance: A study in the Australian landscape. Remote Sensing, 6(9), 7952-7970.
19. Hagolle, O., Goloub, P., Deschamps, P. Y., Cosnefroy, H., Briottet, X., Bailleul, T., ... & Herman, M. (1999). Results of POLDER in-flight calibration. Geoscience and Remote Sensing, IEEE Transactions on, 37(3), 1550-1566.
20. Kamei, A., Nakamura, K., Yamamoto, H., Nakamura, R., Tsuchida, S., Yamamoto, N., ... & Wu, A. M. (2012). Cross Calibration of Formosat-2 Remote Sensing Instrument (RSI) Using Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Geoscience and Remote Sensing, IEEE Transactions on, 50(11), 4821-4831.
21. Kaufman, Y. J., & Sendra, C. (1988). Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing, 9(8), 1357-1381.
22. Kotchenova, S. Y., & Vermote, E. F. (2007). Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. Applied optics, 46(20), 4455-4464.
23. Kotchenova, S. Y., Vermote, E. F., Matarrese, R., & Klemm Jr, F. J. (2006). Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Applied optics, 45(26), 6762-6774.
24. Levy, R. C., Remer, L. A., Tanré́, D., Mattoo, S., & Kaufman, Y. J. (2009). Algorithm for remote sensing of tropospheric aerosol over dark targets from MODIS: Collections 005 and 051: Revision 2; Feb 2009. Download from http://modisatmos. gsfc. nasa. gov/_docs/ATBD_MOD04_C005_rev2. pdf.
25. Lin, T. H., Chen, A. J., Liu, G. R., & Kuo, T. H. (2002). Monitoring the atmospheric aerosol optical depth with SPOT data in complex terrain. International Journal of Remote Sensing, 23(4), 647-659.
26. Lin, T.H., & G.R. Liu, (2009 December). In-Orbit Radiometric Calibration of the FORMOSAT-2 RSI, Terrestrial Atmospheric and Oceanic Science, 20(6), 833-838.
27. Liu, C. C., Kamei, A., Hsu, K. H., Tsuchida, S., Huang, H. M., Kato, S., ... & Wu, A. M. (2010). Vicarious calibration of the Formosat-2 remote sensing instrument. Geoscience and Remote Sensing, IEEE Transactions on, 48(4), 2162-2169.
28. Liu, G. R., Lin, T. H., & Kuo, T. H. (2002). Estimation of aerosol optical depth by applying the optimal distance number to NOAA AVHRR data. Remote Sensing of Environment, 81(2), 247-252.
29. Markham, B., Barsi, J., Kvaran, G., Ong, L., Kaita, E., Biggar, S., ... & Helder, D. (2014). Landsat-8 operational land imager radiometric calibration and stability. Remote Sensing, 6(12), 12275-12308.
30. Mendenhall, J. A., & Lencioni, D. E. (2002). Earth Observing-1 Advanced Land Imager Flight Performance Assessment: Absolute Radiometry and Stability During the First Year (No. PR-EO-1-10). MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB.
31. NASA. (n.d.). About MODIS. Retrieved January 19, 2016, from http://modis.gsfc.nasa.gov/about/
32. NASA. (n.d.). Energy: The Driver of Climate. Retrieved January 19, 2016, from http://www.ces.fau.edu/nasa/module-2/how-greenhouse-effect-works.php
33. National Space Organization. (n.d.). Image Data Levels. Retrieved December 7, 2015, from http://www.nspo.org.tw/2008e/imagesell/quality.htm#top
34. Naughton, D., Brunn, A., Czapla-Myers, J., Douglass, S., Thiele, M., Weichelt, H., & Oxfort, M. (2011). Absolute radiometric calibration of the RapidEye multispectral imager using the reflectance-based vicarious calibration method. Journal of Applied Remote Sensing, 5(1), 053544-053544.
35. NCAVEO. (n.d.). Control file. Retrieved December 7, 2015, from http://www.ncaveo.ac.uk/special_topics/atmospheric_correction/example1/6s_controlfile.php
36. Nieke, J., Aoki, T., Tanikawa, T., Motoyoshi, H., & Hori, M. (2004). A satellite cross-calibration experiment. Geoscience and Remote Sensing Letters, IEEE,1(3), 215-219.
37. Ouaidrari, H., & Vermote, E. F. (1999). Operational atmospheric correction of Landsat TM data. Remote Sensing of Environment, 70(1), 4-15.
38. Sakuma, F., Kikuchi, M., Inada, H., Akagi, S., & Ono, H. (2012, November). Onboard calibration of the ASTER instrument over twelve years. In SPIE Remote Sensing (pp. 853305-853305). International Society for Optics and Photonics.
39. Sakuma, F., Ono, A., Tsuchida, S., Ohgi, N., Inada, H., Akagi, S., & Ono, H. (2005). Onboard calibration of the ASTER instrument. Geoscience and Remote Sensing, IEEE Transactions on, 43(12), 2715-2724.
40. Santer, R., Gu, X. F., Guyot, G., Deuze, J. L., Devaux, C., Vermote, E., & Verbrugghe, M. (1992). SPOT calibration at the La Crau test site (France). Remote Sensing of Environment, 41(2), 227-237.
41. Slater, P. N., Biggar, S. F., Holm, R. G., Jackson, R. D., Mao, Y., Moran, M. S., ... & Yuan, B. (1987). Reflectance-and radiance-based methods for the in-flight absolute calibration of multispectral sensors. Remote Sensing of Environment, 22(1), 11-37.
42. Slater, P. N., Biggar, S. F., Thome, K. J., Gellman, D. I., & Spyak, P. R. (1996). Vicarious radiometric calibrations of EOS sensors. Journal of Atmospheric and Oceanic Technology, 13(2), 349-359.
43. Teillet, P. M., Barker, J. L., Markham, B. L., Irish, R. R., Fedosejevs, G., & Storey, J. C. (2001). Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote sensing of Environment, 78(1), 39-54.
44. Teillet, P. M., Fedosejevs, G., & Thome, K. J. (2004, November). Spectral band difference effects on radiometric cross-calibration between multiple satellite sensors in the Landsat solar-reflective spectral domain. In Remote Sensing (pp. 307-316). International Society for Optics and Photonics.
45. Teillet, P. M., Slater, P. N., Ding, Y., Santer, R. P., Jackson, R. D., & Moran, M. S. (1990). Three methods for the absolute calibration of the NOAA AVHRR sensors in-flight. Remote sensing of Environment, 31(2), 105-120.
46. Thome, K. J. (2002). GROUND-LOOK RADIOMETRIC CALIBRATION APPROACHES FOR REMOTE SENSING IMAGES IN THE SOLAR REFLECTIVE. INTERNATIONAL ARCHIVES OF PHOTOGRAMMETRY REMOTE SENSING AND SPATIAL INFORMATION SCIENCES, 34(1), 255-260.
47. Thome, K. J., Biggar, S. F., & Wisniewski, W. (2003). Cross comparison of EO-1 sensors and other Earth resources sensors to Landsat-7 ETM+ using Railroad Valley Playa. Geoscience and Remote Sensing, IEEE Transactions on, 41(6), 1180-1188.
48. U.S. Geological Survey. (2015 June). LANDSAT 8 (L8) DATA USERS HANDBOOK
49. U.S. Geological Survey. (n.d.). Ivanpah Playa. Retrieved December 7, 2015, from http://calval.cr.usgs.gov/rst-resources/sites_catalog/radiometric-sites/ivanpah/
50. U.S. Geological Survey. (n.d.). Landsat 8. Retrieved December 7, 2015, from http://landsat.usgs.gov/landsat8.php
51. U.S. Geological Survey. (n.d.). Radiometric Sites. Retrieved December 7, 2015, from http://calval.cr.usgs.gov/rst-resources/sites_catalog/radiometric-sites/#Well
52. U.S. Geological Survey. (n.d.). Railroad Valley Playa. Retrieved December 7, 2015, from http://calval.cr.usgs.gov/rst-resources/sites_catalog/radiometric-sites/rrva/
53. U.S. Geological Survey. (n.d.). Sonoran Desert. Retrieved December 7, 2015, from http://calval.cr.usgs.gov/rst-resources/sites_catalog/radiometric-sites/sonoran/
54. Vermote, E., Tanré, D., Deuzé, J. L., Herman, M., Morcrette, J. J., & Kotchenova, S. Y. (2006). Second simulation of a satellite signal in the solar spectrum-vector (6SV). 6S User Guide Version, 3.
55. Villa-Aleman, E., Kurzeja, R. J., & Pendergast, M. M. (2003, September). Temporal, spatial, and spectral variability at the Ivanpah Playa vicarious calibration site. In AeroSense 2003 (pp. 320-330). International Society for Optics and Photonics.