| 研究生: |
葉榮輝 Rong-Hwei Yeh |
|---|---|
| 論文名稱: |
交流白光與電壓調色非晶質薄膜發光二極體的研製 Studies of Alternating-Current and Voltage-Tunable Amorphous Thin-Film Light-Emitting Diodes |
| 指導教授: |
洪志旺
Jyh-Wong Hong |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 非晶矽 、交流 、電壓調色 、薄膜發光二極體 |
| 外文關鍵詞: | amorphous silicon, voltage-tunable, thin-film light-emitting diodes, alternating-current |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文首先探討在n型矽晶圓上製作具二氧化矽隔離之非晶碳化矽氫薄膜發光二極體,此元件在注入電流密度為490 mA/cm2時的發光亮度為855 cd/m2,其電激發光光譜峰值約在610至680 nm。再者,同時利用非晶碳化矽氫與非晶氮化矽氫薄膜製作之薄膜發光二極體,其電激發光光譜峰值可利用電壓加以調變。
第二部份是將傳統pin薄膜發光二極體中之p與n層去除,利用頗為對稱之結構製作可在直流或交流電源下操作的非晶碳化矽氫薄膜發光二極體,此元件的發光強度會隨交流電源頻率而改變,此現象可利用一等效電路加以解釋。另外,也分別探討利用非晶碳氫與非晶氮化矽氫薄膜為發光層之交流白光非晶質薄膜發光二極體的特性,發現利用氫氣電漿處理可以非常有效的提昇元件特性。
In this dissertation, first, the feasibility of developing visible light-emitting devices on n-type c-Si substrate with the SiO2-isolated structure had been demonstrated. This i-a-SiC:H based thin-film LED (TFLED) revealed a brightness of 855 cd/m2 at an injection current density of 490 mA/cm2, a broad electroluminescence (EL) peak with wavelength ranging from 610 to 680 nm, and a full-width at half maximum (FWHM) of 205 nm at an applied voltage of 15 V. Then, the voltage-tunable i-a-SiC:H/i-a-SiN:H p-i-n TFLEDs with SiO2-isolation on c-Si has been proposed and fabricated. Its EL peak wavelength exhibited blue-shift from 655 to 565 nm with applied voltage increasing from 15 to 19 V, but the EL peak wavelength was red-shifted from 565 to 670 nm with further increase of voltage from 19 to 23 V. By comparing with the EL spectra of TFLEDs having an i-a-SiC:H or an i-a-SiN:H luminescent layer only, this voltage-tunable characteristic could be due to voltage-dependent EL contributions from radiative transitions in the i-a-SiC:H layer, i-a-SiN:H layer and i-SiC:H/p-SiC:H junction, respectively.
Also, by discarding the traditional n- and p- layers of a dc-operated p-i-n TFLED, the nearly symmetrical a-SiC:H TFLEDs fabricated on ITO(indium-tin-oxide)-coated glass substrate and exhibiting EL under either a DC (positive or negative) bias or an ac voltage have been demonstrated. The EL intensity of this alternating-current TFLED (ACTFLED) would vary with the frequency of applied ac bias. The EL intensity of this ACTFLED increased with the frequency up to 500 kHz and then decreased rapidly and became very weak as the frequency increased to about 1 MHz. A model based on the equivalent circuit has been proposed to explain this frequency-dependent EL behavior. At the same time, the contact behavior between the employed metal electrode and amorphous film was also investigated in this study. Furthermore, by employing the very thin i-a-C:H or i-a-SiN:H film as the luminescent layers, the ACTFLEDs could emit white light. The EL spectra of the alternating-current white TFLEDs (ACW-TFLEDs) had peak wavelength ranging from 505 to 530 nm and broad FWHM ranging from 240 to 260 nm under either DC forward or reverse bias, or the sinusoidal AC voltage. These devices revealed the brightnesses about 800 (500) cd/m2 under DC forward (reverse) bias at an injection current density of 600 mA/cm2 with the i-a-C:H film as the luminescent layer, and about 170 (168) cd/m2 at an injection current density of 100 mA/cm2 with the i-a-SiN:H film as the luminescent layer, respectively. In addition, it was found that in-situ hydrogen plasma treatment was a very effective way to improve the optoelectronic characteristics of these devices, such as increasing the EL intensity, reducing threshold voltage and broadening the FWHM of the EL spectrum. However, its EL spectrum would be red-shifted with the increased AC frequency. This phenomenon could be due to the carrier recombination occur mainly in the composition-graded (CG) i-a-SiC:H or i-a-SiN:H layer and emit light of longer wavelength when the AC frequency was increased.
[1] K. H. Li, C. Tsai, and J. C. Campbell, “Investigation of rapid-thermal-oxidized porous silicon.” Appl. Phys. Lett., vol.62, pp. 3501-3503, 1993.
[2] H. Chen and X. Hou, “Passivation of porous silicon by wet thermal oxidation.” J. Appl. Phys., vol. 79, pp. 3282-3285, 1996.
[3] I. Kleps, D. Nicolaescu, C. Lungu, G. Musa, C. Bostan, and F. Caccavle, “Porous silicon field emitters for display applications.” Appl. Surface Science, vol. 111, pp. 228-232, 1997.
[4] B. Gelloz and N. Koshida, “Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode.” J. Appl. Phys., vol. 88, pp. 4319-4324, 2000.
[5] Z. An, R. K. Y. Fu, W. Li, P. Chen, and P. K. Chu, “Low-temperature photoluminescence of hydrogen Ion and plasma implanted silicon and porous silicon.” J. Appl. Phys., vol. 96, pp. 248-251, 2004.
[6] D. B. Geohegan, A. A. Puretzky, G.. Duscher, and S. J. Pennycook, “Photoluminescence from gas-suspended SiOx nanoparticles synthesized by laser ablation.” Appl. Phys. Lett., vol. 73, no. 4, pp. 438-440, 1998.
[7] A. V. Kabashin, M. Meunier, and R. Leonelli, “Photoluminescence characterization of Si-based nanostructured films produced by pulsed laser ablation.” J. Vac. Sci. Technol. B, vol. 19, pp. 2217-2222, 2001.
[8] X. Y. Chen, Y. F. Lu, Y. H. Wu, B. J. Cho, M. H. Liu, D. Y. Dai, and W. D. Song, “Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient.” J. Appl. Phys., vol. 93, pp. 6311-6319, 2003.
[9] M. Matsuoka and S. I. Tohno, “Electroluminescence of erbium-doped silicon films as grown by ion beam epitaxy.” Appl. Phys. Lett., vol. 71, no. 1, pp. 96-98, 1997.
[10] C. F. Lin, M. J. Chen, E. Z. Liang, W. T. Liu, and C. W. Liu, “Reduced temperature dependence of luminescence from silicon due to field-induced carrier confinement.” Appl. Phys. Lett., vol. 78, no. 3, pp. 261-263, 2001.
[11] C. F. Lin, M. J. Chen, S. W. Chang, P. F. Chung, E. Z. Liang, T. W. Su, and C. W. Liu, “Electroluminescence at silicon band gap energy from mechanically pressed indium–tin–oxide/Si contact.” Appl. Phys. Lett., vol. 78, no. 13, pp. 1808-1810, 2001.
[12] M. Garter, J. Scofield, R. Birkhahn, and A. J. Steckl, “Visible and infrared rare-earth-activated electroluminescence from indium tin oxide Schottky diodes to GaN:Er on Si.” Appl. Phys. Lett., vol. 74, no. 2, pp. 182-184, 1999.
[13] C. W. Liu, M. H. Lee, M. J. Chen, I. C. Lin, and C. F. Lin, “Room-temperature electroluminescence from electron-hole plasmas in the metal–oxide–silicon tunneling diodes.” Appl. Phys. Lett., vol. 76, no. 12, pp. 1516-1518, 2000.
[14] M. J. Chen, J. F. Chang, J. L. Yen, and C. S. Tsai, “Electroluminescence and photoluminescence studies on carrier radiative and nonradiative recombinations in metal-oxide-silicon tunneling diodes.” J. Appl. Phys., vol. 93, pp. 4253-4259, 2003.
[15] J. G. Mihaychuk, M. W. Denhoff, S. P. McAlister, and W. R. McKinnon, “Broad-spectrum light emission at microscopic breakdown sites in metal-insulator-silicon tunnel diodes.” J. Appl. Phys., vol. 98, pp. 54502-54510, 2005.
[16] T. S. Jen, J. W. Pan, N. F. Shin, J. W. Hong, and C. Y. Chang, “Electroluminescence characteristics and current-conduction mechanism of a-SiC:H p-i-n thin-film light-emitting diodes with barrier layer inserted at p-i interface.” IEEE Trans. On Electron Devices, vol. 41, no. 10, pp. 1761-1769, 1994.
[17] Y. A. Chen, C. F. Chiou, W. C. Tsay, L. H. Laih, J. W. Hong, and C. Y. Chang, “Optoelectronic Characteristics of a-SiC:H-Based P-I-N Thin-Film Light-Emitting Diodes with Low-Resistance and High-Reflectance N+-a-SiCGe:H Layer,” IEEE Trans. On Electron Devices, vol. 44, No. 9, pp. 1360-1366, 1997.
[18] Z. Pei, Y. R. Chang, and H. L. Hwang, “White electroluminescence from ydrogenated amorphous-SiNx thin films,” Appl. Phys. Lett., vol. 80, no. 16, pp. 2839-2841, 2002.
[19] A. Chingsungnoen, P. Kengkan, and W. Tantraporn, “Anomalous Poole-Frenkel mode of current-conduction mechanism in the p-i-n thin-film light-emitting diodes.” IEEE Trans. On Electron Devices, vol. 51, No. 6, pp. 1040-1043, 2004.
[20] M. Uchida, Y. Ohmori, T. Noguchi, T. Ohmishi, and K. Yoshino, “Color-variable light-emitting diode utilizing conducting polymer containing fluorescent dye.” Jpn. J. Appl. Phys., vol. 32, L921-L924, 1993.
[21] J. Kalinowski, P. Di Marco, M. Cocchi, V. Fattori, and N. Camaioni, “Voltage-tunable-color multilayer organic light emitting diode.” Appl. Phys. Lett., vol. 28, no. 17, pp. 2317-2319, 1996.
[22] F. Wang, P. Wang, X. Fan, X. Dang, C. Zhen, and D. Zou, “Voltage-controlled multicolor emitting devices.” Appl. Phys. Lett., vol. 89, pp. 183519-183521, 2006.
[23] C. J. Liang and W. C. H. Choy, “Color tunable organic light-emitting diodes by using europium organometallic complex.” Appl. Phys. Lett., vol. 89, pp. 251108-251110, 2006.
[24] N. Narendran, “Requirements for solid-state lighting,” Lasers and Electro-Optics proceedings, vol. 1, p. 1, 2004.
[25] A. J. Steckl, J. Heikenfeld, and S. C. Allen, “Light wave coupled flat panel displays and solid-state lighting using hybrid inorganic/organic materials.” J. Display Technol., vol. 1, pp. 157-166, 2005
[26] Z. Yang, B. Hu, and F. E. Karasz, “Polymer electroluminescence using ac or reverse dc biasing.” Macromolecules, vol. 28, pp. 6151-6154, 1995.
[27] A. J. Pal, R. Osterbacka, K. M. Kallman, and H. Stubb, “High-frequency response of polymeric light-emitting diodes.” Appl. Phys. Lett., vol. 70, pp. 2022-2024, 1997.
[28] R. Osterbacka, K. M. Kallman, and H. Stubb, “Frequency response of molecularly thin alternating current light-emitting diodes.” J. Appl. Phys., vol. 83, pp. 1748-1752, 1998.
[29] J. Robertson, “Electronic structure of diamond-like carbon,” Diamond Relat. Mater., vol. 6, pp. 212-218, 1997.
[30] M. Koos, M. Veres, M. Fule, and I. Pocsik, “Ultraviolet photoluminescence and its relation to atomic bonding properties of hydrogenated amorphous carbon,” Diamond Relat. Mater., vol. 11, pp. 53-58, 2002.
[31] J. Xu, J. Mei, X. Huang, W. Li, Z. Li, X. Li, and K. Chen, “The change of photoluminescence characteristics of amorphous carbon films due to hydrogen dilution,” J. Non-Cryst. Solids, vol. 338-340, pp. 481-485, 2004.
[32] C. Casiraghi, A. C. Ferrari, and J. Robertson, “Ramon spectroscopy of hydrogenated amorphous carbon,” Phys. Rev. B, vol. 72, no. 8, pp. 85401-85414, 2005.
[33] T. Heitz, C. Godet, J. E. Bouree, and B. Drevillon, “Radiative and nonradiative recombination in polymerlike a-C:H films,” Phys. Rev. B, vol. 60, no. 8, pp. 6045-6052, 1999.
[34] J. V. Anguita, W. T. Young, R. U. Khan, S. R. P. Silva, S. Haq, I. Sturland, and A. Pritchard, “Photoluminescence in low defect density a-C:H and a-C:H:N,” J. Non-Cryst. Solids, vol. 266-269, pp. 821-824, 2000.
[35] S. B. Kim, and J. F. Wager, “Electroluminescence in diamond-like carbon films,” Appl. Phys. Lett., vol. 53, no. 19, pp. 1880-1881, 1988.
[36] A. Foulani, and C. Laurent, “Wide-gap a-C:H prepared by dc glow discharge of CH4: photoluminescence and electroluminescence in the visible region,” Mater. Chem. Phys., vol. 80, pp. 466-471, 2003.
[37] R. Reyes, C. Legnani, P. M. R. Pinto, M. Cremona, P. J. G. de Araugo, and C. A. Achete, “Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films,” Appl. Phys. Lett., vol. 82, no. 23, pp. 4017-4019, 2003.
[38] Y. A. Chen, M. L. Hsu, L. H. Laih, J. W. Hong, and C. Y. Chaug, “Characteristics of SiC-based thin-film LED fabricated using plasma-enhanced CVD system with stainless steel mesh,” Electronics Letters, vol. 35, pp. 1274-1275,1999.
[39] M. S. Haque, H. A. Naseem, W. D. Brown, and S. S. Ang, “Hydrogenated amorphous silicon/aluminum interaction at low temperatures, “Mat. Res. Soc. Symp. Proc., Vol. 258, pp. 1037-1042, 1992.
[40] H. Matsuura, T. Okuno, H. Okushi, and K. Tanaka, “Electrical properties of n-amorphous/p-crystalline silicon heterojunctions.” J. Appl. Phys., vol. 55, pp. 1012-1019, 1984.
[41] D. Kruangam, M. Deguchi, T. Toyama, H. Okamoto, and Y. Hamakawa, “Carrier injection mechanism in a-SiC:H p-i-n junction thin-film LED,” IEEE Trans. Electron Devices, Vol. 35, No. 7, pp.957, 1988.
[42] G. Lavareda, C. Nunes, E. Fortunato, A. Amaral, and A. R. Ramos, “Properties of a-Si:H TFTs using carbonitride as dielectric.” J. Non-Cryst. Sol., vol. 338-340, pp. 797-801, 2004.
[43] S. M. Passche, T. Toyama, H. Okamoto, and Y. Hamakawa, ”Amorphous-SiC thin film p-i-n light-emitting diode using amorphous-SiN hot-carrier tunneling injection layers,” IEEE Trans. Electron Devices, Vol. 36, No.12, pp.2895, 1989.
[44] F. Giorgis, C. F. Pirri, E. Tresso, V. Rigato, S. Zandolin, and P. Rvav, “Wide band gap amorphous silicon-based alloys.” Phys. B, vol. B229, pp. 233-239, 1997.
[45] H. Y. Wey, “Surface of amorphous semiconductors and their contacts with metals.” Phys. Rev. B, vol. 13, pp. 3495-3505, 1976.
[46] B. Gan, J. A. Rusli, Q. Zhang, S. F. Yoon, V. A. Ligatchev, J. Y. K. Chew, “Thickness dependence of density of gap states in diamond films studied using space-charge-limited current,” J. Appl. Phys., vol. 89, no. 10, pp. 5747-5753, 2001.
[47] C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and f. Giorgis, “Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor deposition,” J. Appl. Phys., vol. 96, no. 7, pp. 3987-3997, 2004.
[48] K. Mui, D. K. Basa, F. W. Smith, and R. Corderman “Optical constants of a series of amorphous hydrogenated silicon-carbon alloy films: dependence of optical response on film microstructure and evidence for homogeneous chemical ordering,” Phys. Rev. B, vol. 35, no. 15, pp. 8089-8102, 1987.
[49] J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng. R, vol. 37, pp. 129-281, 2002.
[50] M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B, vol. 16, no. 8, pp. 3556-3571, 1997.
[51] J. Robertson, “Photoluminescence mechanism in amorphous hydrogenated carbon,” Diamond Relat. Mater., vol. 5, pp. 457-460, 1996.
[52] M. A. Lampert and P. Mark, Current injection in Solids. New York: Academic, 1970, chap. 2, 4, and 5.
[53] J. Frenkel, ”On prebreakdown phenomena in insulators and electronic semiconductors,” Phys. Rev., vol. 54, pp. 647-648, 1938.
[54] J. G. Simmons, “Poole-Frenkel effect and Schottky effect in metal-insulators-metal systems,” Phys. Rev., vol. 155, no. 3, pp. 657-660, 1967.
[55] P. Mark, and T. E. Hartman, “On distinguishing between the Schottky and Poole-Frenkel effect in insulators,” in Proc. Rec. Communications Conf., Nov. 1967, pp. 2163-2164.
[56] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., New York: Wiley, 1981, chap. 1, 5, and 7.
[57] R. H. Yeh, T. R. Yu, S. Y. Lo, and J. W. Hong, “Alternating-current white thin-film light-emitting diodes based on hydrogenated amorphous carbon layer,” IEEE Photo. Tech. Lett., vol. 18, no. 22, pp. 2341-2343, 2006.
[58] F. Giorgis, C. F. Pirri, and E. Tresso, “Structural properties of a-Si1-xNx:H films grown by plasma enhanced chemical vapor deposition by SiH4 + NH3 + H2 gas mixtures,” Thin Solid Films, Vol. 307, pp. 298-305, 1997.
[59] V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B, vol. 73, pp. 1953331-1953338, 2006.
[60] J. J. Mei, H. Chen, and W. Z. Shen, ”Optical properties and local bonding configurations of hydrogenated amorphous silicon nitride thin films,” J. Appl. Phys., vol. 100, pp. 0735161-0735169, 2006.