跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃盈綺
Ying-Chi Huang
論文名稱: 以系統動力模式評量A2OMF系統設計與操控方法之發展
指導教授: 廖述良
Shu-Liang Liaw
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 143
中文關鍵詞: A2OMF系統動力模式設計與操控評量
外文關鍵詞: A2OMF, System dynamics model, Design and operation evaluation
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 廢水處理之模擬模式已有多年研究歷史,過去主要是以穩態假設進行模擬,無法考量到最重要的因素──處理系統之進流與系統條件皆隨時間變化,本研究之目的為以A2OMF系統為對象,發展與建置廢水生物處理系統動力模式,並發展將此系統動力模式用於評量A2OMF系統設計與操控之方法。
    系統動力模式依據系統運作機制建立,包含所有變數間的交互作用,各變數的影響因子須持續回饋至變數並使變數隨之改變,以模擬系統動態的運作方式。系統動力模式的發展為建立A2OMF系統運作機制。系統動力模式的建置首先依據運作機制建立系統動力模式之架構圖,再以架構圖撰寫程式並測試,完成系統動力模式之建立。系統動力模式能夠依據各時間區段輸入並運算出結果,並回饋調整系統中個參數與變數,作為接續反應之條件。
    本研究以系統運作機制發展系統動力模式,可供實廠帶入真實系統之設計變數與水質資料進行模擬,在長時間之模擬與修正參數與變數之下,能夠與其他以穩態假設與非實際運作機制所建立之模擬模式提供更加接近真實系統之模擬結果,以做為評量系統設計與操控之參考,並依據模擬之結果發展評量設計與操控之方法。透過本系統動力模式之模擬,亦可計算出各槽體中的狀況,可做為未來操作與設計的依據。


    The simulation model of wastewater treatment has been studied for many years. In the past, the simulation was mainly based on the steady-state assumption. The most important factor could not be considered-the inflow of the treatment system and the system conditions change over time. The purpose of this research is to use A2OMF system is the object of development and construction of the power model of the wastewater biological treatment system, and the development of this system power model for evaluating the design and operation of the A2OMF system.
    The system dynamic model is established based on the system operation mechanism, including the interaction between all variables. The influence factor of each variable must be continuously fed back to the variable and the variable will be changed accordingly to simulate the dynamic operation of the system. The development of the system power model is the establishment of the A2OMF system operation mechanism. The establishment of the system power mode first establishes the architecture diagram of the system power mode based on the operating mechanism, and then writes and tests the program with the architecture diagram to complete the establishment of the system power mode. The system dynamic mode can input and calculate the result according to each time section, and feedback and adjust the parameters and variables in the system as the condition of the continuous reaction.
    This research develops the system dynamic model based on the system operation mechanism, which can be used by the real plant to bring the design variables and water quality data into the real system for simulation. Under long-term simulation and correction of parameters and variables, it can be compared with other steady-state assumptions and non- The simulation model established by the actual operation mechanism provides simulation results closer to the real system, which serves as a reference for evaluating system design and control, and develops methods for evaluating design and control based on the simulation results. Through the simulation of the power mode of this system, the conditions in each tank can also be calculated, which can be used as a basis for future operation and design.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 廢水生物處理系統設計與操控之現況與問題 3 2.2 廢水生物處理系統設計與操控問題之原因 4 2.3 改善廢水生物處理系統設計與操控之策略 4 2.4 A2OMF系統發展與概要 5 2.5 廢水生物處理系統模擬模式發展與現況 5 第三章 研究方法 7 3.1 研究流程與方法概要 7 3.2 系統動力模式的發展與建置流程與方法的建立 8 3.3 A2OMF系統界定 9 3.4 生物處理反應機制彙整 11 3.5 A2OMF運作機制整合 12 3.6 A2OMF系統動力模式建置 13 3.7 A2OMF系統設計與操控之評量 28 第四章 結果與討論 35 4.1 系統動力模式的發展與建置流程與方法的建立之結果與討論 35 4.2 A2OMF系統界定之結果與討論 35 4.3 生物處理反應機制彙整之結果與討論 37 4.4 A2OMF運作機制整合之結果與討論 62 4.5 A2OMF系統動力模式建置之結果與討論 73 4.6 A2OMF系統設計與操控評量之結果與討論 118 第五章 結論與建議 127 5.1 結論 127 5.2 建議 127 參考文獻 129

    [1] Darden, L., & Craver, C., “Strategies in the interfield discovery of the mechanism of protein synthesis.” Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 33(1), 1–28, 2002
    [2] van Eck, D., Mennes, J., “Mechanism Discovery and Design Explanation: Where Role Function Meets Biological Advantage Function.” J Gen Philos Sci 49, 413–434, 2018.
    [3] 謝長宏,系統概論,華泰文化事業股份有限公司,1999年。
    [4] J. Comas, S. Dzeroski, K. Gibert, I. R‐Roda, M. Sànchez‐Marrè, “Knowledge discovery by means of inductive methods in wastewater treatment plant data” AI communications, 14(1), 45-62, 2001.
    [5] D. J. Choi, H. Park, “A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process” Water research, 35(16), 3959-3967, 2001.
    [6] A. Ligeza, “Logical Foundations for Rule-based Systems” Studies in Computational Intelligence 11, Berlin: Springer, 2006.
    [7] B. Raduly, K. V. Gernaey, A. G. Capodaglio, P. S. Mikkelsen, M. Henze, “Artificial neural networks for rapid WWTP performance evaluation: Methodology and case study” Environmental Modelling & Software, 22(8), 1208-1216, 2007.
    [8] B. Ø. Palsson, “Systems biology: simulation of dynamic network states” Cambridge University Press, 2011.
    [9] K. V. Gernaey, X. Flores-Alsina, C. Rosen, L. Benedetti, U. Jeppsson, “Dynamic influent pollutant disturbance scenario generation using a phenomenological modelling approach” Environmental Modelling & Software, 26(11), 1255-1267, 2011.
    [10] L. Åmand, G. Olsson, B. Carlsson, “Aeration control–a review” Water Science and Technology, 67(11), 2374-2398, 2013.
    [11] L. Benedetti, J. Langeveld, A. Comeau, L. Corominas, G. Daigger, C. Martin, P. A. Vanrolleghem, “Modelling and monitoring of integrated urban wastewater systems: review on status and perspectives” Water Science and Technology, 68(6), 1203-1215, 2013.
    [12] S. Park, B. J. Kim, S. Y. Jung, “Simulation methods of a system dynamics model for efficient operations and planning of capacity expansion of activated-sludge wastewater treatment plants” Procedia Engineering, 70, 1289-1295, 2014.

    QR CODE
    :::