| 研究生: |
楊盛博 Sheng-po Yang |
|---|---|
| 論文名稱: |
利用深井岩心探討岩性及構造作用對碎屑沉積岩孔隙率和滲透率之影響 |
| 指導教授: | 董家鈞 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 岩性 、構造作用 、碎屑沉積岩 、孔隙率 、滲透率 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於岩體而言,孔隙率與滲透率是決定地下流體富集與移棲之關鍵因素,然而岩體會受沉積環境與構造作用而產生不同之孔隙率與滲透率。故本研究利用高圍壓孔隙率/滲透率量測儀(YOKO2)量測沉積岩隨有效圍壓變化下之孔隙率和滲透率、觀察岩石薄片及岩石粒徑分析,探討岩性與構造作用對岩石孔隙率與滲透率之影響。本研究使用之試體取自台西盆地南側彰化濱海地區之台灣電力公司TPCS-M1鑽井,為受大地構造影響較低之地區,而試體所屬地層為中新世至更新世。利用其試驗結果,相較於受構造抬升作用影響較大之台灣車籠埔斷層深井鑽探計畫(Taiwan Chelunpu-fault Drilling Project, TCDP)鑽井的岩心試體。結果顯示因岩性與受到構造作用的程度之差異,使得TCDP與TPCS-M1砂岩類之孔隙率及滲透率為粒徑組成、膠結程度與微裂隙密度所控制。然而,TCDP砂質岩類孔隙率與滲透率高於黏土含量較高及微裂隙密度較低之TPCS-M1砂質岩類(孔隙率差距約2 - 5%;滲透率差距約兩個數量級),卻低於膠結較差之TPCS-M1砂質岩類(孔隙率差距約3 - 7%;滲透率差距約一至兩個數量級)。另外,TCDP泥質岩類之孔隙率及滲透率,均低於TPCS-M1泥質岩類(孔隙率差距約8%以內;滲透率差距約一至三個數量級),原因可能與砂含量和岩石之原始埋藏深度有關。
The porosity and permeability of rocks are important parameters for the storage and migration of underground fluids in formations; however, rocks are affected by depositional environment and tectonization and then the porosity and permeability will be changed. The objective of this study is to discuss the effect of lithology characters and tectonization on permeability and porosity of rocks, so this study use the porosity/permeability measurement system(YOKO2) to measure the permeability and porosity of siliciclastic sedimentary rocks, and analyze the thin-sections of core samples and grain size distribution. The tested samples are siliciclastic sedimentary rock from Miocene to Pleistocene of TPCS-M1 with the low degree of tectonism, in the west of Taiwan, and to contrast with TCDP (Taiwan Chelunpu-fault Drilling Project, TCDP), which is on the structure uplift. The experimental results indicate that porosity and permeability of TCDP and TPCS-M1 sandstone is controlled by particle size composition, cementation and microfracture density. However, the porosity and permeability of TCDP sandstone are higher than that of TPCS-M1 arenite with high content of clay and low microfracture density, the differences in porosity and permeability resperctively are about 2 - 5% and two orders, but lower than that of TPCS-M1 arenite with weak cementation, the differences in porosity and permeability respectively are about 3 - 7% and one or two orders. Moreover, the reason for the porosity and permeability of TCDP argillaceous rocks are lower than TPCS-M1 is related to sand content and original buried depths, the differences in porosity and permeability resperctively within about 8% and one or three orders.
江紹平(2007),「台灣中部早期前陸盆地的地層紀錄」,國立中央大學,碩士論文。
吳文傑(2009),「應力歷史相關之沉積岩孔隙率模型」,國立中央大學,碩士論文。
余允辰(2011),「台灣西北部麓山帶沉積岩的孔隙率-滲透率曲線與微觀構造」,國立中央大學,碩士論文。
許瑞育(2007),「沉積岩應力相關之流體特性與沉積盆地之孔隙水壓異常現象」,國立中央大學,碩士論文。
焦中輝、林俊余、俞旗文、盧佳遇(2010),「台西盆地南段晚中新世至更新世沉積地層作為碳地質封存層之探討研究」,中國礦冶工程學會,第55期,頁109-128。
財團法人中興工程顧問社(2014),「二氧化碳地質封存先導試驗場址地質調查及技術研發(一)」,台灣電力公司,期末報告。
楊智豪(2014),「台西盆地南側深井岩心孔隙率與滲透率之初步研究」,國立臺灣海洋大學,碩士論文。
American Society for Testing and Materials, 1974. Test method for permeability of granular soils (Constant Head), ASTM D2434-68.
American Society for Testing and Materials, 2007. Standard test method for particle-size analysis of soils, ASTM D422-63.
Athy, L. F., 1930. Density, porosity and compaction of sedimentary rocks, American Association of Petroleum Geologists Bulletin, Vol. 14, pp. 1-24.
Bernabé, Y., Mok, U., and Evans, B., 2003. Permeability-porosity relationship in rocks subjected to various evolution processes, Pure and Applied Geophysics, Vol. 160, pp. 937-960.
Behrenbruch, P., and Biniwale, S., 2005. Characterisation of clastic depositional environments and rock pore structures using the Carman-Kozeny equation: Australian sedimentary basins, Journal of Petroleum Science and Engineering, Vol. 47, pp. 175-196.
Bjørlykke, K., 2014. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins, Journal of Sedimentary Geology, Vol. 301, pp. 1-14.
Bryant, S. L., Cade, C. A., and Evans, I. J., 1994. Analysis of permeability controls: a new approach, Journal of Clay Minerals, Vol. 29, pp. 491-501.
Carman, P. C., 1937. Fluid flow through a granular bed, Transactions-Institution of Chemical Engineers, Vol. 15, pp. 150-166.
Cather, M. E., Morrow, N. R., and Klich, I., 1991. Characterization of porosity and pore quality in sedimentary rocks, Studies in Surface Science and Catalysis, Vol. 62, pp. 727-736.
Castle, J. W., and Byrnes, A. P., 2005. Petrophysics of Lower Silurian sandstones and integration with the tectonic-stratigraphic framework, Appalachian basin, United States, The American Association of Petroleum Geologist, Vol. 89, pp. 41-60.
David, C., Wong, T. F., Zhu, W., and Zhang, J., 1994. Laboratory measurement of compaction-induced permeability change in porous rocks: implication for the generation and maintenance of pore pressure excess in the crust, Pure and Applied Geophysics, Vol. 143, No. 1, pp. 425-456.
Dickinson, G., 1953. Geological aspects of abnormal reservoir pressures in Gulf Coast Louisana, The American Association of Petroleum Geologists Bulletin, Vol. 37, pp. 410-432.
Di Stefano, C., Ferro, V., and Mirabile, S., 2010. Comparison between grain-size analyses using laser diffraction and sedimentation methods, Biosystems and Engineering, Vol. 106, pp. 205-215.
Dong, J. J., Hsu, J. Y., Wu, W. J., Shimamoto, T., Hung, J. H., Yeh, E. C., Wu, Y. H., and Sone, H., 2010. Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A, International Journal of Rock Mechanics & Mining Sciences, Vol. 47, pp. 1141-1157.
Ehrlich, R., Crabtree, S. J., Horkowitz, K. O., and Horkowitz, J. P., 1991. Petrography and reservoir physics I: objective classification of reservoir porosity, The American Association of Petroleum of Geologists Bulletin, Vol. 75, pp. 1547-1562.
Evans, J. P., Forster, C. B., and Goddard J. V., 1997. Permeability of fault-related rocks, and implications of hydraulic structure of fault zones, Journal of Structure Geology, Vol. 19, pp. 1393-1404.
Folk, R. L., Andrew, P. B., and Lewis, D. W., 1970. Detrital sedimentary rock classification and nomenclature for use in New Zealand, New Zealand Journal of Geology and Geophysics, pp. 937-968.
Hakimi, M. H., Shalaby, M. R., and Abdullah, W. H., 2012. Diagenetic characteristics and reservoir quality of the Lower Cretaceous Biyadh sandstones at Kharir oilfield in the western central Masila Basin, Yemen, Journal of Asian Earth Sciences, Vol. 51, pp. 109-120.
Hiatt, E. E., and Kyser, T. K., 2000. Links between depositional and diagenetic processes in basin analysis: porosity and permeability evolution in sedimentary rock, Mineralogical Association of Canada Short Course, Vol. 28, pp. 1-18.
Hoholick, J. D., Metarko, T., and Potter, P. E., 1984. Regional variations of porosity and cement: St. Peter and Mount Simon Sandstones in Illinois Basin, The American Association of Petroleum Geologists Bulletin, Vol. 68, pp. 753-764.
International Society for Rock Mechanics, 1981. Rock characterization testing and monitoring, ISRM Suggested Method, E. T. Brown (eds.), Pergamon Press, Oxford, United Kingdom.
Jacobs, W., Van Kesteren, W. G. M., and Winterwerp, J. C., 2007. Permeability and consolidation of sediment mixtures as function of sand content and clay mineralogy, International Journal of Sediment Research, Vol. 22, pp. 180-187.
Jones, M. E., and Addis, M. A., 1985. On changes in porosity and volume during burial of argillaceous sediments, Marine and Petroleum Geology, Vol. 2, pp. 247-253.
Lin, A. T., Watts, A. B., and Hesselbo, S. P., 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region, Basin Research, Vol. 15, pp. 453-478.
Ling, L. L., Tsai, Y. Z., and Lin, C. Y., 2009. Comparison of the soil particle size analysis experiment method, Journal of Soil and Water Conservation, Vol. 41, pp. 139-152.
Louis, L., Chen, T. M. N, David, C., Robion, P., Wong, T. F., and Song, S. R., 2008. Anisotropy of magnetic susceptibility and P-wave velocity in core samples from the Taiwan Chelungpu-Fault Drilling Project(TCDP), Journal of Structure Geology, Vol. 30, No. 8, pp. 948-962.
Medina, C. R., Rupp, J. A., and Barnes, D. A., 2010. Effects of reduction in porosity and permeability with depth on storage capacity and injectivity in deep saline aquifers: A case study from the Mount Simon Sandstone aquifer, International Journal of Greenhouse Gas Control, Vol. 5, pp. 146-156.
Mizoguchi, K., Hirose, T., Shimamoto, T., and Fukuyama, E., 2008. Internal structure and permeability of Nojima fault, southwest Japan, Journal of Structure Geology, Vol. 30, pp. 513-524.
Morrow, C. A., Shi, L. Q., and Byerlee, J. D., 1984. Permeability of fault gouge under confining pressure and shear stress, Journal of Geophysical Research, Vol. 89, No. B5, pp. 3193-3200.
Morrow, C. A., and Lockner, D. A., 1994. Permeability differences between surface-derived and deep drillhole core samples, Geophysical Research Letters, Vol. 21, pp. 2151-2154.
Mondol, N. H., Bjørlykke, K., Jahren, J., and Høeg, K., 2007. Experimental mechanical compaction of clay mineral aggregates – Changes in physical properties of mudstones during burial, Marine and Petroleum Geology, Vol. 24, pp. 289-311.
Nagtegaal, P. J. C., 1980. Clastic reservoir rocks – origin, diagenesis, and quality, Presented at the International Meeting of Petroleum Geology.
Okazaki, K., Noda, H., Uehara, S., and Shimamoto, T., 2014. Permeability, porosity and pore geometry evolution during compaction of Neogene sedimentary rocks, Journal of Structural Geology, Vol. 62, pp. 1-12.
Picard, M. D., 1971. Classification of fine-grained sedimentary rocks, Journal of Sedimentary Research, Vol. 41, pp. 179-195.
Potter, P. E., Maynard, J. B., and Pryor, W. A., 1980. Sedimentology of Shale. Springer, New York.
Ranjith, P. G., and De Silva, P. N. K., 2012. A study of methodologies for CO2 storage capacity estimation of saline aquifers, Fuel, Vol. 93, pp. 13-27.
Scheidegger, A. E., 1974. The Physics of Flow through Porous Media, Third edition, Toronto: University of Toronto Press.
Schmoker, J. W., and Halley, R. B., 1982. Carbonate porosity versus depth: A predictable relation for south Florida, The American Association of Petroleum Geologists Bulletin, Vol. 66, pp. 2561-2570.
Scherer, M., 1987. Parameters influencing porosity in sandstones: a model for sandstone porosity prediction, The American Association of Petroleum Geologists Bulletin, Vol. 71, pp. 485-491.
Selley, R. C., and Stephen, S. A., 2014. Elements of petroleum geology. Academic Press.
Shi, T., and Wang, C. Y., 1986. Pore pressure generation in sedimentary basins: overloading versus aquathermal, Journal of Geophysical Research, Vol. 91, No. B2, pp. 2153-2162.
Singh, V. P., 1997. Kinematic Wave Modeling in Water Resources: Environmental Hydrology, Wiley, New York.
Uehara, S. I., Shimamoto, T., Okazaki, K., Hironori, F., Kurikami, H., Niizato, T., and Ohnishi, Y., 2012. Can surface samples be used to infer underground permeability structure? A test case for a Neogene sedimentary basin in Horonobe, Japan, International Journal of Rock Mechanics & Mining Sciences, Vol. 56, pp. 1-14.
Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments, Journal of Geology, Vol. 30, pp. 79-99.
Wen, B., Aydin, A., and Duzgoren-Aydin, N. S., 2002. A comparative study of particle size analyses by sieve-hydrometer and laser diffraction methods, ASTM Geotechnical Testing Journal, Vol. 25, pp. 434-442.
Yang, Y., and Aplin, A. C., 2007. Permeability and petrophysical properties of 30 natural mudstones, Journal of Geophysical Research, Vol. 112, pp. 1-24.
Yang, Y., and Aplin, A. C., 2010. A permeability-porosity relationship for mudstones, Marine and Petroleum Geology, Vol. 27, pp. 1692-1697.