跳到主要內容

簡易檢索 / 詳目顯示

研究生: 湯千慧
Chien-hui Tang
論文名稱: 動作參數對於選擇性抑制的影響
How Do Parameters of Motor Response Influence Selective Inhibition? Evidence from the Stop-signal Paradigm.
指導教授: 張智宏
Eric Chihhung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 認知與神經科學研究所
Graduate Institute of Cognitive and Neuroscience
畢業學年度: 100
語文別: 中文
論文頁數: 81
中文關鍵詞: 肢體選擇性抑制動作參數方向
外文關鍵詞: motor paramater, selective inhibition, effector, direction
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 選擇性抑制係指當兩個動作同時進行時,停止其中之一,而讓另外一個動作繼續進行的能力。過去的研究通常只對一個動作參數來研究抑制機制,本論文想要探討不同動作參數對於選擇性抑制的影響。藉由一系列三個實驗,描繪出不同肢體配對以及不同動作方向的動作在行為上的差異。實驗一探討是否不同肢體所對應的動作控制皮質區之距離遠近,會影響其配對進行選擇性抑制之停止訊號反應時間。我們採用了Boucher et al. (2007)中修改過的停止訊號典範,以「右手食指與右手中指」或是「右手食指與右腳」的配對。受試者需要經過三種抑制階段的考驗:單獨抑制,同時抑制與交錯抑制,以比較停止訊號反應時間是否在不同肢體配對間會有差異。結果顯示選擇性抑制的停止訊號反應時間會顯著長於全面性抑制的停止訊號反應時間,而且右手跟右腳配對的停止訊號反應時間會顯著長於右手食指與右手中指配對的停止訊號反應時間。實驗二目標是去探討抑制機制是否會受「動作肢體」以及「動作方向」這兩個決定動作執行方式的參數。實驗二操弄了動作方向性(相同或相反),結果顯示停止訊號反應時間在選擇方向的時候會比在選擇肢體的時候來的更長。為了澄清此種差異是否是來自於選擇方向時的選項,比選擇肢體的選項更多,而造成困難度差異,我們在實驗三中對於動作肢體以及動作方向設定了相同數量的可能反應選項。當困難度被控制的時候,停止訊號反應時間在比較肢體以及比較方向上就無顯著差異。 因此,「動作肢體」與「動作方向」兩個參數的選擇,對於選擇性抑制機制而言的困難度是相當的,抑制的歷程可能發生在決定動作肢體與方向之前,或是兩者的共同階段。


    The ability to selectively inhibit the execution of an action while performing other ones is crucial in humans’ multitasking daily life. Few studies have investigated the contributions of different motor parameters in inhibition. The current study aims to compare selective inhibition for choice reaction involving two effectors or response directions. We adopted a variation of the stop-signal paradigm to examine how selective inhibition is modulated by how potential motor responses are combined and inhibited. Experiment 1 investigated selective inhibition under different combinations of effectors, namely “index and middle fingers” versus “hand and foot”. The results showed that SSRT of the index finger was longer when the other response option was the foot than was the middle finger. Experiment 2 examined how selective inhibition differs between selective stopping of effectors and movement directions, and that for most of the situations SSRT is longer for stopping a response based on its direction than effector. After equating complexity of response mapping between direction and effector conditions in Experiment 2, Experiment 3 showed that SSRT is not different between selecting direction or effectors. To summarize, SSRT varies depending on the way response effectors are paired and selectively stopped. Selective inhibition is thus likely not amodal and may involve different inhibitory mechanisms depending on parameters specifying the motor response.

    中文摘要 I Abstract II 目錄 III 圖目錄 V 1 序論 1 1.1 抑制的概念 1 1.2 研究抑制的典範 3 1.2.1. Go/no-go典範(go/no go paradigm) 3 1.2.2. 逆向眼動作業(anti-saccade task) 4 1.2.3. 停止訊號典範 6 1.3 與抑制功能相關的大腦區域 8 1.4 分離選擇性抑制和全面性抑制 10 1.5 選擇不同動作配對 15 1.6 肢體與方向的分離 22 1.7 研究目標 24 2 實驗一:不同肢體配對對於抑制的影響 26 2.1 實驗方法 26 2.1.1. 受試者 26 2.1.2. 刺激材料與實驗程序 27 2.1.3. 資料分析 30 2.2 結果 33 2.2.1. 反應嘗試的反應時間 33 2.2.2. 停止訊號反應時間 35 2.3 討論 40 3 實驗二:肢體與方向對於抑制的影響 43 3.1 實驗方法 43 3.1.1. 受試者 43 3.1.2. 刺激材料與實驗程序 43 3.1.3. 資料分析 46 3.2 結果 46 3.2.1. 反應時間 46 3.2.2. 停止訊號反應時間 47 3.3 討論 51 4 實驗三:選擇性多寡對於方向與肢體抑制的影響 52 4.1 實驗方法 52 4.1.1. 受試者 52 4.1.2. 刺激材料與實驗程序 52 4.1.3. 資料分析 54 4.2 結果 55 4.2.1. 反應時間 55 4.2.2. 停止訊號反應時間 59 4.3 討論 62 5 綜合討論 64 5.1 選擇性抑制與全面性抑制 64 5.2 肢體與方向對於抑制機制的影響 66 參考文獻 68 附錄一 71 附錄二 73

    Amador, N., Schlag-Rey, M., & Schlag, J. (1998). Primate antisaccades. I. Behavioral characteristics. Journal of Neurophysiology, 80(4), 1775-1786.
    Aron, A. R. (2007). The neural basis of inhibition in cognitive control. The Neuroscientist, 13(3), 214-228.
    Aron, A. R. (2011). From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69(12), e55-e68.
    Aron, A. R., Durston, S., Eagle, D. M., Logan, G. D., Stinear, C. M., & Stuphorn, V. (2007). Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. The Journal of Neuroscience, 27(44), 11860-11864.
    Aron, A. R., & Verbruggen, F. (2008). Stop the Presses. Psychological Science, 19(11), 1146.
    Badry, R., Mima, T., Aso, T., Nakatsuka, M., Abe, M., Fathi, D., . . . Fukuyama, H. (2009). Suppression of human cortico-motoneuronal excitability during the Stop-signal task. Clinical Neurophysiology, 120(9), 1717-1723.
    Bell, A., Everling, S., & Munoz, D. (2000). Influence of stimulus eccentricity and direction on characteristics of pro-and antisaccades in non-human primates. Journal of Neurophysiology, 84(5), 2595.
    Boucher, L., Stuphorn, V., Logan, G. D., Schall, J. D., & Palmeri, T. J. (2007). Stopping eye and hand movements: Are the processes independent? Attention, Perception, & Psychophysics, 69(5), 785-801.
    Byblow, W. D., Coxon, J. P., Stinear, C. M., Fleming, M. K., Williams, G., Müller, J. F. M., & Ziemann, U. (2007). Functional connectivity between secondary and primary motor areas underlying hand–foot coordination. Journal of Neurophysiology, 98(1), 414-422.
    Chambers, C. D., Garavan, H., & Bellgrove, M. A. (2009). Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neuroscience & Biobehavioral Reviews, 33(5), 631-646.
    Coxon, J. P., Stinear, C. M., & Byblow, W. D. (2006). Intracortical inhibition during volitional inhibition of prepared action. Journal of Neurophysiology, 95(6), 3371.
    Coxon, J. P., Stinear, C. M., & Byblow, W. D. (2007). Selective inhibition of movement. Journal of Neurophysiology, 97(3), 2480-2489.
    De Jong, R., Coles, M. G. H., & Logan, G. D. (1995). Strategies and mechanisms in nonselective and selective inhibitory motor control. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 498.
    de Zubicaray, G. I., Andrew, C., Zelaya, F., Williams, S., & Dumanoir, C. (2000). Motor response suppression and the prepotent tendency to respond: a parametric fMRI study. Neuropsychologia, 38(9), 1280-1291.
    Dorris, M. C., & Munoz, D. P. (1995). A neural correlate for the gap effect on saccadic reaction times in monkey. Journal of Neurophysiology, 73(6), 2558-2562.
    Duann, J. R., Ide, J. S., Luo, X., & Li, C. R. (2009). Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition. The Journal of Neuroscience, 29(32), 10171.
    Fischer, B., & Weber, H. (1997). Effects of stimulus conditions on the performance of antisaccades in man. Experimental Brain Research, 116(2), 191-200.
    Gherri, E., Van Velzen, J., & Eimer, M. (2007). Dissociating effector and movement direction selection during the preparation of manual reaching movements: Evidence from lateralized ERP components. Clinical Neurophysiology, 118(9), 2031-2049.
    Harnishfeger, K. K. (1995). The development of cognitive inhibition. Interference and inhibition in cognition, 175-204.
    Huntley, G. W., & Jones, E. G. (1991). Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: a correlative anatomic and physiological study. Journal of Neurophysiology, 66(2), 390-413.
    Lhermitte, F. (1983). ‘Utilization behaviour’and its relation to lesions of the frontal lobes. Brain, 106(2), 237.
    Logan, G., Kantowitz, B., & Riegler, G. (1986). On the ability to stop selectively: Mechanisms of response interdiction in choice reaction time. Unpublished manuscript, Purdue University.
    Logan, G. D. (1994). On the ability to inhibit thought and action: A users'' guide to the stop signal paradigm.
    Logan, G. D., Cowan, W. B., & Davis, K. A. (1984). On the ability to inhibit simple and choice reaction time responses: A model and a method. Journal of Experimental Psychology: Human Perception and Performance, 10(2), 276.
    Majid, D., Cai, W., George, J. S., Verbruggen, F., & Aron, A. R. (2011). Transcranial Magnetic Stimulation Reveals Dissociable Mechanisms for Global Versus Selective Corticomotor Suppression Underlying the Stopping of Action. Cerebral Cortex.
    Menon, V., Adleman, N., White, C., Glover, G., & Reiss, A. (2001). Error‐related brain activation during a Go/NoGo response inhibition task. Human brain mapping, 12(3), 131-143.
    Munoz, D. P., & Everling, S. (2004). Look away: the anti-saccade task and the voluntary control of eye movement. Nature Reviews Neuroscience, 5(3), 218-228.
    Nakamura, H., Kitagawa, H., Kawaguchi, Y., & Tsuji, H. (1997). Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. The Journal of physiology, 498(Pt 3), 817-823.
    Rubia, K., Russell, T., Overmeyer, S., Brammer, M. J., Bullmore, E. T., Sharma, T., . . . Andrew, C. M. (2001). Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage, 13(2), 250-261.
    Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage, 20(1), 351-358.
    Smith, R. (1992). Inhibition: History and meaning in the sciences of mind and brain: Univ of California Pr on Demand.
    Sumner, P., Nachev, P., Morris, P., Peters, A. M., Jackson, S. R., Kennard, C., & Husain, M. (2007). Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron, 54(5), 697-711.
    van den Wildenberg, W. P. M., Burle, B., Vidal, F., van der Molen, M. W., Ridderinkhof, K. R., & Hasbroucq, T. (2010). Mechanisms and dynamics of cortical motor inhibition in the stop-signal paradigm: A TMS study. Journal of cognitive neuroscience, 22(2), 225-239.
    Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends in Cognitive Sciences, 12(11), 418-424.
    Waldvogel, D., Van Gelderen, P., Muellbacher, W., Ziemann, U., Immisch, I., & Hallett, M. (2000). The relative metabolic demand of inhibition and excitation. Nature, 406(6799), 995-998.
    Wallis, J., Dias, R., Robbins, T., & Roberts, A. C. (2001). Dissociable contributions of the orbitofrontal and lateral prefrontal cortex of the marmoset to performance on a detour reaching task. European Journal of Neuroscience, 13(9), 1797-1808.

    QR CODE
    :::