| 研究生: |
張順富 Shun-fu Chang |
|---|---|
| 論文名稱: |
無鎳鋯基及鈦基金屬玻璃生物相容性之研究 Biocompatibility study of Ni-free Zr-base and Ti-base metallic glasses |
| 指導教授: |
鄭憲清
Shian-ching Jang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系在職專班 Executive Master of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 無鎳鋯基金屬玻璃 、無鎳鈦基金屬玻璃 、生物相容性 、小鼠纖維母細胞 |
| 外文關鍵詞: | Ni-free Zr-base metallic glass, Ni-free Ti-base metallic glass, Biocompatibility, Murine Fibroblast |
| 相關次數: | 點閱:28 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醫療植入物因需長期使用,安全性及可靠性是產品的首要條件。金屬玻璃因其優異的機械性質、耐蝕性、抗菌性與良好的生物相容性,近年來許多學者開始進行將其應用於醫療器械的相關研究。
本研究以真空吸鑄法成功製備出Zr42Cu42Al8Ag8、Zr48Cu36Al8Ag8及Ti40Zr10Cu36Pd14無鎳金屬玻璃,分別利用EDS、XRD、AFM進行成份定量分析、晶體結構以及表面形貌觀察。無鎳金屬玻璃均為非晶結構,其表面粗糙度皆在2.68 nm以下。為評估無鎳金屬玻璃的生物相容性,將小鼠纖維母細胞株L929培養於金屬玻璃上進行觀察細胞貼附於金屬玻璃之型態、細胞毒性測試與金屬離子釋出對細胞影響之分析。其中以Ti40Zr10Cu36Pd14無鎳金屬玻璃生物相容性表現最佳,無論在細胞培養直接接觸法或MTT assay均證實不具有細胞毒性;細胞貼附實驗結果顯示細胞易於生長且細胞膜延展佳,與現行醫療用鈦合金(Ti-6Al-4V)有相似的表現;且其無鎳的成份及極低銅離子溶出比現有醫療用合金具有更良好的生物相容性。
Safety and reliability are crucial issues to medical instruments and implants. In the past few decays, bulk metallic glass draw lots attentions due to their excellent mechanical properties, good corrosion resistance, antibacterial and good biocompatibility, and were considered as an ideal candidate for medical related implants.
Three Ni-free bulk metallic glasses include the Zr42Cu42Al8Ag8, Zr48Cu36Al8Ag8 and Ti40Zr10Cu36Pd14 were studied and evaluated their potential as medical implants. The glassy nature and composition of these three bulk metallic glasses were firstly confirmed by X-ray diffraction analysis and energy dispersive spectrometer. The surface roughness examined by atomic force microscope, all samples perform nano-meter-scale surface roughness. Several biocompatibility tests were carrying out to evaluate these three bulk metallic glasses co-cultural with L929 murine fibroblast cell line. The results of cellular adhesion behavior, cytotoxic, and metallic ion release affection. The optima biocompatibility results occur at Ti40Zr10Cu36Pd14 bulk metallic glass, cell still attached on the petri dish with good adhesion and exhibit the spindle shape after direct contact test. Furthermore, the Ti40Zr10Cu36Pd14 sample showed the lowest Ni and Cu ion release level which correlate to MTT results. Based on the data mentioned above, we believe that Ti40Zr10Cu36Pd14 bulk metallic glass can be one of ideal candidates for medical implant materials.
[1]. W. L. Johnson, “Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys”, Mater. Sci. Forum, vol.225-227, 1996, pp.35.
[2]. A. Inoue, M. Koshiba, T. Zhang and T. Masumoto, “New bulk amorphous Fe-(Co, Ni)-M-B (M=Zr, Hf, Nb, Ta, Mo, W) alloys with good soft magnetic properties”, J. Appl. Phys, vol.83, 1998, pp.1967-1972.
[3]. A. Inoue and K. Hashimoto, “Amorphous and Nanocrystalline Materials: Preparation, Properties, and Applications”, Springer, 2001.
[4]. M. Naka, K. Hashimoto and T. Masumoto, “Change in corrosion behavior of amorphous Fe-P-C alloys by alloying with various metallic elements”, J. Non-Cryst. Solids, vol.31, 1979, pp.355-365.
[5]. T. C. Chieh, J. Chu, C. T. Liu and J. K. Wu, “Corrosion of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions”, Mater. Lett., vol.57, 2003, pp.3022-3025.
[6]. B. M. Im, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, “The effect of phosphorus addition on the corrosion behavior of amorphous Fe-8Cr-P alloys in 9M H2SO4”, Corros. Sci., vol.37, 1995, pp.709-722.
[7]. H. Habazaki, H. Ukai, K. Izumiya and K. Hashimoto, “Corrosion behaviour of amorphous Ni–Cr–Nb–P–B bulk alloys in 6M HCl solution”, Mater. Sci. Eng., vol.318, 2001, pp.77-86.
[8]. C. A. C. Sousa and C. S. Kiminami, “Crystallization and corrosion resistance of amorphous FeCuNbSiB”, J. Non-Cryst. Solids, vol.219, 1997, pp.155-159.
[9]. W. H. Peter, R.A. Buchanan, C.T. Liu, P.K. Liaw, M.L. Morrison, J.A. Horton, C.A.Carmichael Jr. and J.L. Wright, “Localized corrosion behavior of a zirconium based bulk metallic glass relative to its crystalline state”, Intermetallics, vol.10, 2002, pp.1157-1162.
[10]. Inoue, H. Koshiba, T. Zhang and A. Makino, “Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0–10Nb(or Ta)0–10B20 amorphous alloys”, J. Appl. Phys., vol. 83, 1998, pp. 1967-1974.
[11]. Y. Hara, T. Ando, R.C. O’Handley and N.J. Grant, “Fine-particle magnetism in the devitrified metallic glass Fe43Cr25Ni20B12”, Jpn. J. Appl. Phys., vol.62,1987, pp.1948-1951.
[12]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Mater. Sci. Eng., vol.226-228, 1997, pp.357-363.
[13]. A. Inoue and J.S. Gook, “Fe-Based Ferromagnetic Glassy Alloys with Wide Supercooled Liquid Region”, Mater. Trans., JIM, vol.36, 1995, pp.1180-1183.
[14]. A. Inoue and J.S. Gook, “Effect of Additional Elements(M) on the Thermal Stability of Supercooled Liquid in Fe72-xAl5Ga2P11C6B4Mx Glassy Alloys”, Mater. Trans., JIM, vol.37, 1996, pp.32-38.
[15]. A. Inoue, T. Zhang, W. Zhang, and A. Takeuchi, “Bulk Nd-Fe-Al Amorphous Alloys with Hard Magnetic Properties”, Mater. Trans., JIM, vol.37, 1996, pp.99-108.
[16]. A. Inoue, T. Zhang and A. Takeuchi, “Preparation of Bulk Pr-Fe-Al Amorphous Alloys and Characterization of Their Hard Magnetic Properties”, Mater. Trans., JIM, vol.37, 1996, pp.1731-1740.
[17]. A. Inoue and A. Makino, “Improvement of Soft Magnetic Properties of Nanocrystalline Fe-M-B (M=Zr and Nb) Alloys and their Applications”, Nanostruct. Mater., vol.9, 1997, pp.403-412.
[18]. A. Inoue, M. Koshiba, T. Itoi and A. Makino, “Ferromagnetic Co–Fe–Zr–B amorphous alloys with glass transition and good high-frequency permeability”, Appl. Phys. Lett., vol.73, 1998, pp.744-746.
[19]. A. Inoue, “Bulk amorphous and nanocrystalline alloys with high functional properties”, Mater. Sci. Eng., vol.304-306, 2001, p.1.
[20]. S.L. Zhu, X.M. Wang, F.X. Qin and A. Inoue, “A new Ti-based bulk glassy alloy with potential for biomedical application”, Mater. Sci. Eng., vol.459, 2007, pp.233-237.
[21]. J. J. Oak and A. Inoue, “Attempt to develop Ti-based amorphous alloys for biomaterials”, Mater. Sci. Eng., vol.449-451, 2007, pp.220-224.
[22]. C.L. Qiu, Q. Chen, L. Liu, K. C. Chan, J. X. Zhou, P. P. Chen and S. M. Zhang, “A novel Ni-free Zr-based bulk metallic glass with enhanced plasticity and good biocompatibility”, Scripta Mater., vol.55, 2006, pp.605-608.
[23]. H. H. Huang, Y. S. Sun, C. P. Wu, C. F. Liu, P. K. Liaw and W. Kai, “Corrosion resistance and biocompatibility of Ni-free Zr-based bulk metallic glass for biomedical applications”, Intermetallics, vol.30, 2012, pp.139-143.
[24]. N. Hua, L. Huang, J. Wang, Y. Cao, W. He, S. Pang and T. Zhang, “Corrosion behavior and in vitro biocompatibility of Zr–Al–Co–Ag bulk metallic glasses: An experimental case study”, J. Non-Cryst. Solids, vol.358, 2012, pp.1599-1604.
[25]. Z. Liu, L. Huang, W. Wu, X. Luo, M. Shi, P. K. Liaw, W. He and T. Zhang, “Novel low Cu content and Ni-free Zr-based bulk metallic glasses for biomedical applications”, J. Non-Cryst. Solids, vol.363, 2013, pp.1-5.
[26]. L. Liu, C. L. Qiu, C. Y. Huang, Y. Yu, H. Huang and S. M. Zhang “Biocompatibility of Ni-free Zr-based bulk metallic glasses”, Intermetallics, vol.17, 2009, pp.235-240.
[27]. H. F. Li, Y. F. Zheng, F. Xu and J. Z. Jiang “In vitro investigation of novel Ni free Zr-based bulk metallic glasses as potential biomaterials”, Mater. Lett., vol.75, 2012, pp.74-76.
[28]. M. Niinomi, “Metals for Biomedical Devices”, Woodhead Publishing, 2010.
[29]. C. Leyens and M. Peters, “Titanium and Titanium Alloys: Fundamentals and Applications”, Wiley, Weinheim, 2003.
[30]. B. Basu, D. Katti and A. Kumar, “Advanced Biomaterials — Fundamentals, Processing, and Applications”, Wiley, Weinheim, 2009.
[31]. M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants – A review”, Prog. Mater Sci., vol.54, 2009, pp.397-425.
[32]. M. Long and H.J. Rack, “Titanium alloys in total joint replacement—a materials science perspective”, Biomaterials, vol.19, 1998, pp.1621-1639 .
[33]. L. Ponsonnet, V. Comte, A. Othmane, C. Lagneau, M. Charbonnier, M. Lissac, and N. Jaffrezic, “Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel-titanium substrates”, Mater. Sci. Eng., vol.21, 2002, pp.157-165.
[34]. C. Wirth, V. Comte, C. Lagneau, P. Exbrayat, M. Lissac, N. J. Renault, and L. Ponsonnet, “Nitinol surface roughness modulates in vitro cell response: a Comparison between fibroblasts and osteoblasts,” Mater. Sci. Eng., vol.25, 2005, pp.51-60.
[35]. International Organization for Standardization, “ISO-10993: Biological Evaluation of Medical Devices”, 3rd, 2003.
[36]. A. Brenner, D. E. Couch and E. K. Williams, “Electro-deposition of alloys of phosphorus and nickel or cobalt”, J. Res Nat. Bur. Stand., vol.44, 1950, pp.109-112.
[37]. W. Klement, R. H. Willens and P. Duwez, “Non-crystalline structure in solidified gold-silicon alloys”, Nature, vol.187, 1960 , pp.869-870.
[38]. H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Rev. Sci. Instrum., vol.41, 1970, p.1237.
[39]. H. Liebermann and C. Graham, “Production of amorphous alloy ribbon and effect of apparatus parameters on ribbon dimensions”, IEEE Trans. Mang., vol.12, 1976, pp.921-923.
[40]. 吳學陞著作,“新興材料-塊狀非晶質金屬材料”,工業材料,149期,1999年,pp.154-159。
[41]. C. C. Koch, O. B. Cavin, C. G. Mckamey and J. O. Scarbrough, “Preparation of amorphous Ni60Nb40 by mechanical alloying”, Appl. Phys. Lett., vol.43,1983, pp.1017-1019.
[42]. A. Inoue and K. Hashimoto, “Amorphous and Nanocrystalline Materials”, Springer, 1995, p.7.
[43]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Mater. Sci. Eng., vol.226-228, 1997, pp.357-363.
[44]. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Mater. Trans. JIM, vol.32, 1991, pp. 609-616.
[45]. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloy with High Tensile Strength Produced by a High-Pressure Die Casting Method”, Mater. Trans. JIM, vol.33, 1992, pp.937-945.
[46]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Mater. Sci. Eng, vol.226-228, 1997, pp.357-363.
[47]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Mater. Trans. JIM, vol.36,1995, pp.866-875.
[48]. A. Inoue, A. Takeuchi and T. Zhang, “Ferromagnetic bulk amorphous alloys”, Metall. Mater. Trans., vol.29, 1998, pp.1779-1793.
[49]. A. Inoue, T. Zhang and A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Mater. Sci. Forum, vol.269-272, 1998, pp.855-864.
[50]. R. E. Reed-Hill, Physical Metallurgy Principles 2nd, D. Van Nostrand Company, Inc., USA, 1994.
[51]. R. W. Cahn, P. Hassen and E. J. Kramer, “Materials Science of Technology”, vol.9, New York, USA, 1991.
[52]. G. N. Jackson, “R.F. sputtering”, Thin Solid Film, vol. 5, pp.209-246, 1907.
[53]. K. L. Chapra, “Thin Film Phenomena”, McGraw-Hill, New York 1969.
[54]. 鄭振東,非晶質金屬漫談,建宏出版社,Taipei,Taiwan,1990.
[55]. A. Inoue and A. Takeuchi, “Recent development and application products of bulk glassy alloys”, Acta Materialia, vol. 59, 2011, pp. 2243-2267,.
[56]. A. Inoue, “Bluk Amouphous Alloys Practical Characteristics and Application Institute for Material Reserch”, Tohoku University Katahira 2-1-1, Sendai 980-8577, Japan.
[57]. M. E. McHenry, M. A. Willard and D. E. Laughlin, “Amorphous and nanocrystalline materials for applications as soft magnets”, Prog. Mater Sci., vol.44, 1999, pp. 291-433.
[58]. F. X. Qin, X. M. Wang, G. Q. Xie and A. Inoue, “Distinct plastic strain of Ni-free Ti–Zr–Cu–Pd–Nb bulk metallic glasses with potential for biomedical applications”, Intermetallics, vol.16, 2008, pp.1026-1030.
[59]. J. C. Wataha, P. E. Lockwood, A. Schedle, “Effect of silver, copper, mercury, and nickel ions on cellular proliferation during extended, low-dose exposures”, J Biomed Mater., vol.52, 2000, pp.360-364
[60]. S. R. Elliot, “Physics of Amorphous Material”, 2nd Ed. , USA, 1990.
[61]. A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Masumoto, Mater. Trans., JIM, vol.35, 1994, p.95.
[62]. Richard Zallen, ”The Physics of Amorphous Solids”, A Wiley-Interscience, Canada, 1983.
[63]. A. Inoue, ”Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Mater., vol. 48, 2000, p. 279
[64]. The United States Pharmacopeial Convention, “U.S. Pharmacopeia / National Formulary” 37th edition, 2003.
[65]. J. A. Lee, I. D. Marsden and C. N. Glover, “The influence of salinity on copper accumulation and its toxic effects in estuarine animals with differing osmoregulatory strategies”, Aquat Toxicol, vol.99, 2010, pp. 65-72.
[66]. J. C. Wataha, C. T. Ylardm and Z. Sun, “Effect of cell line on in vitro metal ion cytotoxicity” , Dent. Mater. J., vol.10, 1994, pp. 156-161.
[67]. 財團法人食品工業發展研究所生物資源保存及研究中心。網址:http://www.bcrc.firdi.org.tw/
[68]. P. Brescia, and P. Banks, “Quantifying Cytotoxicity of Thiostrepton on Mesothelioma Cells using MTT Assay and the Epoch™ Microplate
Spectrophotometer”, BioTek Instruments, Inc., Winooski, VT