| 研究生: |
劉冠佑 Guan-You Liou |
|---|---|
| 論文名稱: |
微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應 The thermal flow characteristics of the micro parallel flow and microtube flow: a numerical study on the effect of compressibility andrarefaction. |
| 指導教授: |
吳俊諆
Jiunn-Chi Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 微管流 、壓縮效應 、稀薄效應 、黏滯消散 |
| 外文關鍵詞: | Viscous dissipation, Microchannel flow, Compressibility, Rarefaction |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文是運用FEMLAB軟體模擬微管道的壓縮與非壓縮氣流,流場與熱傳的數值解並與理論解、數值解和實驗數據比對,流道包括平行板與圓管,管徑尺寸介於0.1~1000 。馬赫數(Ma)與雷諾數(Re)分別介於5.75×10-5< Ma <0.65以及8.97×10-3< Re <1000,而努森數之範圍則是涵蓋連續流到過渡流區域(7.23×10-4< Kn <2.07)。
壓縮流的模擬顯示隨入出口壓力比(PR)增加,壓力分佈非線性程度愈顯著,所以無法形成完全發展流。另一方面稀薄效應會隨管徑縮小而加強,它對流場的影響和壓縮效應互相牽制,即這二者對速度分佈、壓力分佈、摩擦常數和Nu的影響恰好相反。傳統上利用 作為壓縮流的分界對於微流並不適用,應改用入出口壓力比和壓差來判別,本文數值解顯示即使入口Ma極低但在適當的PR條件下,就需考慮流場的壓縮效應。
對於大管道( )的摩擦常數與理論值相近,但隨管徑縮小( ),摩擦常數會低於理論值。整體來說,微管流的的摩擦常數會隨著Re遞減與Kn增加而逐漸低於理論值。
在熱傳方面,發現當管徑縮小和Re增高,黏滯消散愈明顯。對於等溫加熱流場,黏滯消散效應會導致熱傳效率大幅降低,但對冷卻流場,卻會使提高熱傳效率。致於滑動流區域,隨著Kn增加,Nu會降低且偏離理論值。
This work uses the software FEMLAB to simulate compressible and incompressible gas flow in microchannels. Both micro parallel flow and microtube flow were analyzed, where the hydraulic diameter Dh ranging from 0.1 to 1000 . Simulated parameters cover wide flow regime including: Mach number (5.75×10-5< Ma <0.65), Reynolds number (8.97×10-3< Re<103) and from the continuum flow upto transitional flow (Kn <2.07).
Solutions of compressible flow show that the nonlinearity of pressure distribution is proportional to the inlet/outlet pressure ratio (PR), which causes the condition of fully developed flow invalid. As Dh decreases, rarefaction effects gets intense and it is contradict with compressibility effects, which can be observed in characteristics of velocity, pressure distributions, friction constant, and Nusselt number (Nu). Traditional value of Ma>0.3 as the lower bound of compressible flow is not valid in the microchannel flow; instead one should use PR and pressure difference to identify the compressible flow. Numerical results indicate that the flow is compressible even at very low inlet Ma provided that value of PR is moderate.
Regarding the friction constant (C) analysis, for large microchannel size (Dh=100- 300 ) computed values of friction constant agrees well with the theory. But when the microchannel size reduces ( ), friction constant is lower than the theatrical value. Overall, the reduction of C in microchannel flow is proportional to the increment of Kn and the decrease of Re.
Characteristics of heat transfer were also studied. Effect of viscous dissipation becomes important as Dh reduces and Re increases. For heating flow viscous dissipation drastically lessens heat transfer rate, but for cooling flow the phenomena just opposite. In the slip flow regime and Kn increases, Nu tends to decrease and deviate from conventional theory.
陳家勇,壓縮微管流的熱流分析,國立中央大學碩士論文,中壢市,2002
林冠宏,以數值模擬探討微管流之物理效應,國立中央大學碩士論文,中壢市,2003
黃經孝,微尺度電滲流物理特性之數值模擬,國立中央大學碩士論文,中壢市,2004
Araki, T., Kim, M. S., Iwai, H., Suzuki, K., “An experimental investigation of gaseous flow characteristics in microchannel,” Microscale Thermal Eng., Vol. 6, pp. 117-130, 2002.
Araki, T., Kim, M. S., Fujimoto, R., Inaoka, K., Suzuki, K., “An experimental investigation of gaseous flow characteristics in microtube,” Proc. Kyoto University-Tsinghua University Joint Conf. on Energy and Environment, pp.7-12, 1999.
Arkilic, E. B., Schmidt, M. A., and Breuer, K. S., “Gaseous flow in microchannels,” ASME Symposium on Micromachining and Fluid Mechanics, Nov. 1994.
Arkilic, E. B., Schmidt, M. A., and Breuer, K. S., “Mass flow and tangential momentum accommodation in silicon micromachined channels,” J. Fluid Mech. vol. 437, pp.29-43, 2001.
Asako, Y., Pi, T., Turner, S. E., Faghri, M., “Effect of compressibility on gaseous flows in microchannels,” Int. J. Heat Mass Transfer, Vol. 46, pp.3041-3050, 2003.
Berg, H. R., Seldam, C. A., Gulik, P. S., “Compressible laminar flow in a capillary,” J. Fluid Mech. pp.1-20, 1983.
Beskok, A. and Karniadakis, G. E., “Simulation of heat and momentum transfer in complex micro geometries,” J. Thermophysics Heat Transfer, Vol. 8, No. 4, pp. 647-655, 1994.
Beskok, A., Karniadakis, G. E. and Trimmer, W., “Rarefaction and compressibility effects in gas microflows,” J. Fluids Eng., Vol. 118, pp. 448-456, 1996.
Bird, G. A., “Molecular gas dynamics and the direct simulation of gas flows ,” New York:Oxford University Press, 1994.
Chen, C. S., Lee, S. M. and Sheu, J. D., “Numerical analysis of gas flow in microchannels,” Numerical Heat Transfer, Part A, 33: pp. 749-762, 1998.
Chen, C. S., Lee, S. M. and Sheu, J. D., “The analytical and numerical solutions for gaseous slip flow in microchannels,” J. Chinese Institute Engineers, Vol. 23, No. 2, pp. 229-235, 2000.
Chen, C. S., Kuo, W. J., “Heat transfer and flow friction for gaseous flow in microtubes,” Trans. of the Aeronautical and Astronautical Society of the Republic of China, Vol. 35, No. 3, pp.257-266, 2003.
Choi, S., Barron, R., and Warrington, R., “Fluid flow and heat transfer in microtubes,” ASME Micromechanical Sensors, Actuators, and Systems, vol. 32, pp. 123-134, 1991.
Choquette, S. F., Faghri M., Kenyon, E. J. and Sunden B., “Compressible fluid flow in micro sized channels,” ASME National Heat Transfer Conference, HTD-Vol. 327, pp. 25-32, 1996.
FEMLAB http://www.comsol.com.
Guo, Z. Y. and Wu, X. B., “Compressibility effect on the gas flow and hest transfer in a microtube,” Int. J. Heat Mass Transfer, Vol. 40, No. 13, pp. 3251-3254, 1997.
Guo, Z. Y., and Li, Z. X.,“Size effect on microscale single-phase flow and heat transfer,” Int. J. Heat and Mass Transfer, Vol. 46, pp. 149-159, 2003.
Gad-el-Hak, M., ed. The MEMS Handbook, CRC Press, 2000.
Hadjiconstantinou, N. G. and Simek, O., “Constant wall temperature nusselt number in micro and nano channels,” J. Heat Transfer, Vol. 124, 2002.
Harley, J. C., Huand, Y., Bau, H. and Zemel, J. N., “Gas flow in micro channels,” J. Fluid Mech., Vol. 284, pp. 257-274, 1995.
Hodge, B. K. and Koenig, K. Compressible Fluid Dynamics with Personal Computer Applications, Prentice-Hall, 1995.
Judy J., Maynes D. and Webb B. W., “Characterization of frictional pressure drop for liquid flows through microchannels” Int. J. Heat and Mass Transfer, Vol. 42, pp. 3815-3829, 2002.
Karniadakis, G. E and Beskok, A., Micro Flows:Fundamentals and Simulation, Springer Verlag, 2002.
Kaverhpour, H. P., Faghri, M. and Asako, Y., “Effects of compressibility and rarefaction on gaseous flows in microchannels,” Numerical Heat Transfer, Part A, 32: pp. 677-696, 1997.
Mala, G. M. and Li, D., “Flow characteristics of water in microtubes,” Int. J. Heat and Fluid Flow, vol. 20, pp. 142-148, 1999.
Maxwell, J. C., “On stresses in rarefied gases arising from inequalities of temperature,” Philosophical Transactions of the Royal Society Part 1, Vol. 170, pp. 231-256, 1879.
Papautsky, I., Ameel, T. A., Frazier, A. B., “A review of laminar single-phase flow in microchannnels,” ASME Int. Mechanical Engineering Congress and Exposition, New York, Nov., 2001.
Pfahler, J., Harley, J., Bau, H., and Zemel, J. N., “Gas and liquid flow in small channels,” ASME Micromechanical Sensors, Actuators, and Systems, vol. DSC-32, pp. 49-60, 1991.
Pong, K. C. and Ho, C. M., “Non-linear pressure distribution in microchannels,” Int. Mechanical Engineering Congress and Exposition, Chicago, Illinois, EFD-vol. 197, pp. 51-56, ASME, 1994.
Ren, L., Qu, W. and Li, D., “Interfacial electrokinetic effects on liquid flow in microchannels,” Int. J. Heat Mass Transfer, vol. 44, pp. 3125-3134, 2001b.
Schaff, S. A. and Chambre P. L., Flow of Rarefied Gases, Princeton University Press, New Jersey. 1961
Tso, C. P. and Mahulikar, S. P., “The use of the Brinkman number for single phase forced convective heat transfer in microchannels,” Int. J. Heat Mass Transfer, Vol. 41, No. 12, pp. 1759-1769, 1998.
Tso, C. P. and Mahulikar, S. P., “The role of the Brinkman number in analyzing flow transitions in microchannels,” Int. J. Heat Mass Transfer, Vol. 42, pp. 1813-1833, 1999.
Tso, C. P. and Mahulikar, S. P., “Experimental verification of the role of Brinkman number in microchannels using local parameters,” Int. J. Heat Mass Transfer, Vol. 43, pp. 1837-1849, 2000.
Tuckerman, D. B., and Pease, R. F. W., “Highperformance heat sinking for VLSI,” IEEE Electron Dev. Lett., vol. EDL-2, NO. 5, pp. 126-129, 1981
Tunc, G., and Bayazitoglu, Y., “Heat transfer in microtubes with viscous dissipation,” Int. J. Heat Mass Transfer, vol. 44, pp. 2395-2403, 2001.
Turner, S. E., Sun, H., Faghri, M. and Gregory, O. J., “Gas flow through smooth and rough microchannel,” 12th Int. Heat Transfer Conf., Grenoble, France, Aug. pp.18-23, 2002.
Wu, P. and Little, W. A., “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thompson refrigerators,” Cryogenics, Vol. 23, No. 5, pp. 273-277, 1983.
Xue. H. and Fan Q., “New analytic solution of Navier-Stokes equations for microchannel flows,” Microscale Thermophysical Eng., Vol. 4, pp. 125-143, 2000.
Xu, B., Ooi, K.T., Mavriplis C. and Zaghloul, M. E., “Evaluation of viscous dissipation in liquid flow in microchannels,” J. Micromech. Microeng., Vol.13, pp.53-57, 2003.