| 研究生: |
顔嘉儀 Chia-I Yen |
|---|---|
| 論文名稱: |
類沸石咪唑骨架材料(ZIF-90)之官能基修飾與 包覆質體DNA的探討 |
| 指導教授: | 謝發坤 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 機金屬骨架材料 、後修飾 、ZIF-90 、乙烯基吡咯烷酮 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文包含兩部分,第一部分延續實驗室已畢業的吳哲瑋學長之研究成果,將含有醛官能基的有機金屬骨架材料─ZIF-90─利用後修飾的方式轉換為三種分別帶有羧酸、胺基、硫醇基的不同材料,分別命名為ZIF-90-C、ZIF-90-A、ZIF-90-T。在溫和的反應條件下,修飾後的材料仍保有結晶性和孔洞性質,其中有近80%之微孔體積顯著的保留在修飾後的ZIF-90-C和ZIF-90-A材料上。而ZIF-90-A在純水中因胺基的質子化,其界達電位值提升至30 mV,表示其在水相中的分散穩定度提高,能延緩沉降聚積的速度,加上所有材料修飾前後皆保有溫和的細胞毒性,因此經過轉換官能基後能提升材料在生物方面應用的潛力。
第二部分根據實驗室在2015年成功利用ZIF-90材料包覆蛋白質的經驗,將包覆對象延伸至大分子量的核酸。本部分實驗藉由在ZIF-90水相的合成環境中加入預先混合的乙烯基吡咯烷酮(Polyvinylpyrrolidone, PVP)與質體DNA,使質體在ZIF-90晶體形成時被包覆在材料內,且其結晶性與外觀形態並沒有受影響,並初步利用電泳的方式確認核酸存在材料當中,未來仍需要實驗證實質體的包覆率及核酸序列完整性。期盼得到的複合材料能保護核酸並利用表面易於修飾等特質,有助於做為基因傳輸載體的應用。
In the first part of this dissertation, the aldehyde groups of Zeolitic Imidazolate Framework-90 (ZIF-90) were converted into carboxyl, amino, and thiol groups, which were named ZIF-90-C, ZIF-90-A and ZIF-90-T respectively, confirmed by the spectrometric investigations. X-ray diffraction patterns and N2 adsorption isotherm showed that the crystallinity and porosity of the framework were not affected. Remarkably, the micropore volume in ZIF-90-C and ZIF-90-A were retained almost 80% due to the mild reaction condition and the optimal reactant equivalence. According to zeta-potential analysis, the positive charge on surface of ZIF-90-A was significantly enhanced, which implies dispersion stability in water and affinity to slightly negatively charged cell surface. In addition to the surface charge enhancement, the moderate in vitro cytotoxicity of the transformers, as reported by AlamarBlue assay on HEK293 cell line, revealed the functionalization opens a new way for ZIF-90 in bioapplications.
In the second part, on the basis of our previous publication regarding embedded enzyme in MOF crystals, the guest molecules in this study was changing from enzyme to DNA. By adding polyvinylpyrrolidone together with plasmid into the aqueous ZIF-90 synthesis condition, the plasmid could be surrounded by the ZIF-90 framework. The X-ray diffraction patterns and the Scanning Electron Microscope image indicated the crystallinity and the morphology of ZIF-90 were intact after imbedding plasmid. Additionally, agarose gel electrophoresis primarily confirmed the nucleic acid component in acid-digested DNA/ZIF-90 complex material. It is worth mentioning that loading efficiency of plasmid and integrity of the nucleotide sequence need to be further studied. The ease of functionalization for DNA/ZIF-90 complex material is expected to be a benefit to gene delivery.
1. Tomic, E. A., Thermal stability of coordination polymers. J. Appl. Polym. Sci. 1965, 9 (11), 3745-3752.
2. Hoskins, B. F.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc. 1990, 112 (4), 1546-1554.
3. Gliemann, H.; Wöll, C., Epitaxially grown metal-organic frameworks. Mater. Today 2012, 15 (3), 110-116.
4. Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995, 378 (6558), 703-706.
5. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
6. The Cambridge Crystallographic Data Centre. http://www.ccdc.cam.ac.uk/SUPPORTANDRESOURCES/Support/Pages/SupportSolution.aspx?supportsolutionid=275.
7. Batten Stuart, R.; Champness Neil, R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J., Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). In Pure Appl. Chem., 2013; Vol. 85, p 1715.
8. Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydın, A. Ö.; Hupp, J. T., Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? J. Am. Chem. Soc. 2012, 134 (36), 15016-15021.
9. MOF the chart: why a record-breaking surface area matters. http://theconversation.com/mof-the-chart-why-a-record-breaking-surface-area-matters-9915.
10. Shieh, F.-K.; Hsiao, C.-T.; Wu, J.-W.; Sue, Y.-C.; Bao, Y.-L.; Liu, Y.-H.; Wan, L.; Hsu, M.-H.; Deka, J. R.; Kao, H.-M., A bioconjugated design for amino acid-modified mesoporous silicas as effective adsorbents for toxic chemicals. J. Hazard. Mater. 2013, 260 (0), 1083-1091.
11. Degnan, T., Jr., Applications of zeolites in petroleum refining. Top. Catal. 2000, 13 (4), 349-356.
12. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C., Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38 (5), 1477-1504.
13. Murray, L. J.; Dinca, M.; Long, J. R., Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38 (5), 1294-1314.
14. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T., Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38 (5), 1450-1459.
15. Kent, C. A.; Liu, D.; Ma, L.; Papanikolas, J. M.; Meyer, T. J.; Lin, W., Light Harvesting in Microscale Metal–Organic Frameworks by Energy Migration and Interfacial Electron Transfer Quenching. J. Am. Chem. Soc. 2011, 133 (33), 12940-12943.
16. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112 (2), 1105-1125.
17. Wang, C.; Zhang, T.; Lin, W., Rational Synthesis of Noncentrosymmetric Metal–Organic Frameworks for Second-Order Nonlinear Optics. Chem. Rev. 2012, 112 (2), 1084-1104.
18. Shimizu, G. K. H.; Taylor, J. M.; Kim, S., Proton Conduction with Metal-Organic Frameworks. Science 2013, 341 (6144), 354-355.
19. Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M., Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angew. Chem. Int. Ed. 2006, 45 (10), 1557-1559.
20. Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (27), 10186-10191.
21. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319 (5865), 939-943.
22. Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R., Carbon Dioxide Capture in Metal–Organic Frameworks. Chem. Rev. 2012, 112 (2), 724-781.
23. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res. 2009, 43 (1), 58-67.
24. Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C.-K., Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. J. Am. Chem. Soc. 2012, 134 (35), 14345-14348.
25. Li, P.-Z.; Aranishi, K.; Xu, Q., ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chem. Commun. 2012, 48 (26), 3173-3175.
26. Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K., Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano 2014, 8 (3), 2812-2819.
27. Pan, Y.; Lai, Z., Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chem. Commun. 2011, 47 (37), 10275-10277.
28. Song, Q.; Nataraj, S. K.; Roussenova, M. V.; Tan, J. C.; Hughes, D. J.; Li, W.; Bourgoin, P.; Alam, M. A.; Cheetham, A. K.; Al-Muhtaseb, S. A.; Sivaniah, E., Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 2012, 5 (8), 8359-8369.
29. Wu, H.; Zhou, W.; Yildirim, T., Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8. J. Am. Chem. Soc. 2007, 129 (17), 5314-5315.
30. Han, S. S.; Choi, S.-H.; Goddard, W. A., Improved H2 Storage in Zeolitic Imidazolate Frameworks Using Li+, Na+, and K+ Dopants, with an Emphasis on Delivery H2 Uptake. The Journal of Physical Chemistry C 2011, 115 (8), 3507-3512.
31. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. J. Am. Chem. Soc. 2008, 130 (38), 12626-12627.
32. Everett, D. H., Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. In Pure Appl. Chem., 1972; Vol. 31, p 577.
33. Thompson, J. A.; Blad, C. R.; Brunelli, N. A.; Lydon, M. E.; Lively, R. P.; Jones, C. W.; Nair, S., Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis. Chem. Mater. 2012, 24 (10), 1930-1936.
34. Lo, W.-S.; Liu, S.-M.; Wang, S.-C.; Lin, H.-P.; Ma, N.; Huang, H.-Y.; Shieh, F.-K., A green and facile approach to obtain 100 nm zeolitic imidazolate framework-90 (ZIF-90) particles via leveraging viscosity effects. RSC Adv 2014, 4 (95), 52883-52886.
35. Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C. W., Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size. Chem. Eur. J. 2013, 19 (34), 11139-11142.
36. Yang, T.; Chung, T.-S., Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation. Journal of Materials Chemistry A 2013, 1 (19), 6081-6090.
37. Huang, A.; Wang, N.; Kong, C.; Caro, J., Organosilica-Functionalized Zeolitic Imidazolate Framework ZIF-90 Membrane with High Gas-Separation Performance. Angew. Chem. Int. Ed. 2012, 51 (42), 10551-10555.
38. Huang, A.; Dou, W.; Caro, J. r., Steam-Stable Zeolitic Imidazolate Framework ZIF-90 Membrane with Hydrogen Selectivity through Covalent Functionalization. J. Am. Chem. Soc. 2010, 132 (44), 15562-15564.
39. Bae, T.-H.; Lee, J. S.; Qiu, W.; Koros, W. J.; Jones, C. W.; Nair, S., A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal–Organic Framework Crystals. Angew. Chem. Int. Ed. 2010, 49 (51), 9863-9866.
40. Li, H.; Feng, X.; Guo, Y.; Chen, D.; Li, R.; Ren, X.; Jiang, X.; Dong, Y.; Wang, B., A malonitrile-functionalized metal-organic framework for hydrogen sulfide detection and selective amino acid molecular recognition. Sci. Rep. 2014, 4.
41. Thompson, J. A.; Brunelli, N. A.; Lively, R. P.; Johnson, J. R.; Jones, C. W.; Nair, S., Tunable CO2 Adsorbents by Mixed-Linker Synthesis and Postsynthetic Modification of Zeolitic Imidazolate Frameworks. J. Phys. Chem. C 2013, 117 (16), 8198-8207.
42. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M., Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295 (5554), 469-472.
43. Deng, H.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M., Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science 2010, 327 (5967), 846-850.
44. Cohen, S. M., Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chem. Rev. 2012, 112 (2), 970-1000.
45. Tanabe, K. K.; Wang, Z.; Cohen, S. M., Systematic Functionalization of a Metal−Organic Framework via a Postsynthetic Modification Approach. J. Am. Chem. Soc. 2008, 130 (26), 8508-8517.
46. 林麗娟, X 光繞射原理及其應用. 工業材料 1994, 86, 100-109.
47. X-ray Diffraction.
https://universe-review.ca/F13-atom04.htm.
48. Wide Angle X-ray Diffraction Studies of Liquid Crystals. http://cnx.org/contents/517f8f37-f619-4408-a8b4-2ef8a53e8c29@2/Wide_Angle_X-ray_Diffraction_S.
49. Scanning Electron Microscope.
https://www.purdue.edu/ehps/rem/rs/sem.htm..
50. Chemistry Stack Exchange. http://chemistry.stackexchange.com/questions/14738/difference-between-torsion-out-of-plane-coplanar-and-perpendicular-bends.
51. Andrew, E. R.; Bradbury, A.; Eades, R. G., Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed. Nature 1958, 182 (4650), 1659-1659.
52. 高憲明, 多核固態核磁共振於孔洞材料結構鑑定之應用. CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) 2004, 62 (2), 285-298.
53. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57 (4), 603-619.
54. BET analysis.
http://www.nanodic.com/nanocharacterization/BET_analysis.htm.
55. Gravimetric Methods of Analysis. http://chemwiki.ucdavis.edu/Wikitexts/UC_Davis/UCD_Chem_115/3._Gravimetric_Methods_of_Analysis.
56. Skoog, D. A.; West, D. M., Principles of instrumental analysis. Saunders College Philadelphia: 1980; Vol. 158.
57. Verwey, E. J. W., Theory of the Stability of Lyophobic Colloids. The Journal of Physical and Colloid Chemistry 1947, 51 (3), 631-636.
58. 陳冠任, 高速篩選系統的建立與新藥物開發. CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) 2008, 66 (4), 269-277.
59. Davis, M. E.; Chen, Z.; Shin, D. M., Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008, 7 (9), 771-782.
60. Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W., Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 2006, 6 (4), 662-668.
61. Venna, S. R.; Jasinski, J. B.; Carreon, M. A., Structural Evolution of Zeolitic Imidazolate Framework-8. J. Am. Chem. Soc. 2010, 132 (51), 18030-18033.
62. Yee, K.-K.; Reimer, N.; Liu, J.; Cheng, S.-Y.; Yiu, S.-M.; Weber, J.; Stock, N.; Xu, Z., Effective Mercury Sorption by Thiol-Laced Metal–Organic Frameworks: in Strong Acid and the Vapor Phase. J. Am. Chem. Soc. 2013, 135 (21), 7795-7798.
63. Schejn, A.; Balan, L.; Falk, V.; Aranda, L.; Medjahdi, G.; Schneider, R., Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. CrystEngComm 2014, 16 (21), 4493-4500.
64. Huo, J.; Marcello, M.; Garai, A.; Bradshaw, D., MOF-polymer composite microcapsules derived from Pickering emulsions. Adv Mater 2013, 25 (19), 2717-22.
65. Lampam GM, P. D., Kriz GS,Vyvyan JR, Spectroscopy. Fourth ed.; Brooks/Cole, Cengage Learning Canada, 2010.
66. Jose, T.; Hwang, Y.; Kim, D.-W.; Kim, M.-I.; Park, D.-W., Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl ether. Catal. Today 2015, 245 (0), 61-67.
67. Hall, C. M.; Wemple, J., A carbon-13 nuclear magnetic resonance study of thiol esters. The Journal of Organic Chemistry 1977, 42 (12), 2118-2123.
68. Shang L Fau - Nienhaus, K.; Nienhaus K Fau - Nienhaus, G. U.; Nienhaus, G. U., Engineered nanoparticles interacting with cells: size matters. (1477-3155 (Electronic)).
69. Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W., Size-Dependent Cytotoxicity of Gold Nanoparticles. Small 2007, 3 (11), 1941-1949.
70. He, Q.; Zhang, Z.; Gao, Y.; Shi, J.; Li, Y., Intracellular Localization and Cytotoxicity of Spherical Mesoporous Silica Nano- and Microparticles. Small 2009, 5 (23), 2722-2729.
71. Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M. J.; Horcajada, P., Cytotoxicity of nanoscaled metal-organic frameworks. J. Mater. Chem. B 2014, 2 (3), 262-271.
72. Anderson, W. F.; Blaese, R. M.; Culver, K., The ADA human gene therapy clinical protocol: Points to Consider response with clinical protocol, July 6, 1990. Hum Gene Ther 1990, 1 (3), 331-62.
73. Juan-Alcaniz, J.; Gascon, J.; Kapteijn, F., Metal-organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. J. Mater. Chem. 2012, 22 (20), 10102-10118.
74. Li, B.; Zhang, Y.; Ma, D.; Ma, T.; Shi, Z.; Ma, S., Metal-Cation-Directed de Novo Assembly of a Functionalized Guest Molecule in the Nanospace of a Metal–Organic Framework. J. Am. Chem. Soc. 2014, 136 (4), 1202-1205.
75. Hu, P.; Zhuang, J.; Chou, L.-Y.; Lee, H. K.; Ling, X. Y.; Chuang, Y.-C.; Tsung, C.-K., Surfactant-Directed Atomic to Mesoscale Alignment: Metal Nanocrystals Encased Individually in Single-Crystalline Porous Nanostructures. J. Am. Chem. Soc. 2014, 136 (30), 10561-10564.
76. Jia, Y.; Wei, B.; Duan, R.; Zhang, Y.; Wang, B.; Hakeem, A.; Liu, N.; Ou, X.; Xu, S.; Chen, Z.; Lou, X.; Xia, F., Imparting biomolecules to a metal-organic framework material by controlled DNA tetrahedron encapsulation. Sci. Rep. 2014, 4.
77. Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A., Nucleic Acid–Metal Organic Framework (MOF) Nanoparticle Conjugates. J. Am. Chem. Soc. 2014, 136 (20), 7261-7264.
78. Soppimath, K. S.; Aminabhavi, T. M.; Kulkarni, A. R.; Rudzinski, W. E., Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001, 70 (1-2), 1-20.
79. Shieh, F. K.; Wang, S. C.; Yen, C. I.; Wu, C. C.; Dutta, S.; Chou, L. Y.; Morabito, J. V.; Hu, P.; Hsu, M. H.; Wu, K. C.; Tsung, C. K., Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. J Am Chem Soc 2015, 137 (13), 4276-9.
80. Birnboim, H. C.; Doly, J., A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979, 7 (6), 1513-1523.