跳到主要內容

簡易檢索 / 詳目顯示

研究生: 歐子威
Tzu-Wei Ou
論文名稱: 機率式地震損失與修復成本評估之本土化研究
Localized Study on Probabilistic Seismic Loss and Repair Cost Assessment
指導教授: 陳鵬宇
Peng-Yu Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 98
中文關鍵詞: FEMA P-58本土化修復成本地震損失評估Pelicun災損模擬
外文關鍵詞: FEMA P-58, localized repair cost, earthquake loss assessment, Pelicun, loss simulation
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣位處環太平洋地震帶,地震頻繁,對建築物安全與經濟造成重大威脅。傳統耐震評估方法以靜力分析為主,雖能了解建物在設計地震下的性能,卻無法量化損失與修復成本。FEMA P-58 為一機率式的地震損失評估方法,可透過構件易損性與後果模型評估災後損害、修復成本與時間。近年來,該架構已成為國際上地震風險評估的研究主軸,實務界也逐漸將其導入來評估建築物設計性能水準。然而,其物價成本源自美國,與台灣營建市場差異甚大,尚無法在台灣直接應用。
    為此,本研究針對FEMA P-58方法進行本土化調整,選定台灣常見構件,依損壞狀態拆解修復工項,並參考國內公共工程價格資料庫及災後實際修繕案例建立本土化修復成本資料庫。研究以美國開源地震損失評估工具Pelicun為核心,將其構件損失與修復方法依國內常用預算編列方式重組,並與原始FEMA資料結果進行比較。本研究後續以一棟鋼筋混凝土構架為例,比較FEMA P-58有無本土化之損失差異。結果顯示,多數構件本土估價顯著低於FEMA資料,有部分差異超過80%,顯示本土化之重要性。
    本研究亦建立Pelicun本土資料輸入架構,可供使用者自行定義建築中所含之構件與修繕成本。未來可擴展至更多構件與建築類型,結合自動化程式,來推廣機率式地震損失風險評估。本研究成果對耐震設計、工程保險、災後重建及政策擬定具實務應用價值。


    Taiwan is situated within the seismically active circum-Pacific belt and is frequently affected by earthquakes, posing considerable risks to both building safety and the national economy. Traditional seismic evaluation methods primarily rely on nonlinear static analyses, which are suitable for assessing structural performance under design-level ground motions but fall short in estimating potential economic losses and repair costs. FEMA P-58 is a probabilistic seismic risk assessment methodology that evaluates post-earthquake damage, repair costs, and functional downtime using component fragility functions and consequence models. In recent years, this framework has gained prominence in international seismic risk assessment research and has. However, because the cost data embedded in FEMA P-58 are based on the U.S. construction market, they are not directly applicable to Taiwan.
    To address this gap, this study proposes a localized adaptation of the FEMA P-58 methodology tailored to Taiwan. Common structural and non-structural components used in Taiwanese buildings were identified, and their repair actions were defined based on various damage states. A localized repair cost database was then developed using data from the Taiwan Public Construction Cost Database and real-world post-earthquake repair records. The open-source tool Pelicun, which implements FEMA P-58, was used as the core analytical framework. Component loss models and repair cost data were reorganized to align with Taiwan's construction budgeting practices. A case study involving a reinforced concrete (RC) frame building was conducted to compare the loss estimates generated using localized versus original FEMA data. The results reveal that localized repair cost estimates are significantly lower than those from the FEMA dataset—by more than 80% in some cases—underscoring the necessity of localization for accurate loss estimation.
    Furthermore, this study establishes a flexible data input framework within Pelicun, enabling users to define building components and repair costs in accordance with local practices. This framework provides a foundation for future expansions to include a broader range of components and building types. It also facilitates integration with automated workflows to support large-scale, probabilistic seismic loss assessments. The outcomes of this study have substantial practical implications for seismic design, engineering insurance, post-disaster reconstruction, and policymaking in Taiwan.

    目錄 一、緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 論文架構 4 二、研究方法與本土資料收集 6 2-1 FEMA P-58耐震評估法簡介 6 2-2 FEMA P-58修復成本計算 8   2-2-1修復成本計算流程 9   2-2-2成本定義 10 2-3 災損計算工具 12   2-3-1 PACT 12   2-3-2 Pelicun 13   2-3-3 PACT與Pelicun比較 13 2-4本土資料收集與問題 14 三、成本資料本土化 20 3-1所選構件介紹 20 3-2所選構件成本資料建置邏輯 20   3-2-1 所選構件於P-58之維修成本分類 20   3-2-2 所選構件於P-58之維修成本計算 21 3-3所選構件維修成本之本土化估算 22   3-3-1 本土化估算原則 22   3-3-2 修復工項成本差異比較 23 3-4所選構件之本土成本與 FEMA P-58 成本比較 24 3-5小結 25 四、本土成本資料應用與分析 36 4-1 本土資料使用 36   4-1-1 Pelicun計算流程 36   4-1-2 Pelicun使用方法 37   4-1-3 Pelicun本土成本資料庫創建與讀取 40 4-2 結構模型介紹 41 4-3結構模擬與反應 42 4-4模擬結果與討論 43 4-5收斂性分析 44 4-6敏感度分析 44   4-6-1 DBE結果分析 45   4-6-2 MCE結果分析 47 五、結論與未來展望 73 5-1 結論 73 5-2討論 74   5-2-1使用本土成本資料的必要性 74   5-2-2 未來台灣使用FEMA P-58方法應補足之項目 75 5-3 未來展望 76 參考文獻 78 附錄 82

    參考文獻
    [1]Cheng, K. T., Cheng, C. F., & Chen, Y. R. (2023). 台中市韌性城市和空污治理指標建構之研究: 層級分析法 (AHP) 的應用. 政策與人力管理, 14(1), 111-149.
    [2]張易鴻. (2022). 打造防災韌性城市-以新北市為例. 中國行政評論, 28(1), 22-42
    [3]Chen, P. Y., & Taciroglu, E. (2023). 基於 FEMA P58 法之區域韌性評估: 以美國洛杉磯非韌性鋼筋混凝土構架為例. 結構工程, 38(1), 118-134.
    [4]蔡衍真, 單信瑜, & 姚大鈞. (2017). 從學術定義論述評估風險到評估韌性. 工業安全衛生, (39), 22-3910.6311/ISHM.2017.334.4。
    [5]洪鴻智, 徐牧謙, & 洪至萱. (2021). 都會颱洪災害韌性變遷及其與脆弱度, 調適力之連結. 地理學報, (99), 59-81.
    [6]蔡衍真, 單信瑜, & 姚大鈞. (2017). 評估風險的實務做法及評估韌性要點. 工業安全衛生, (40), 15-30
    [7]戴基福. (2020). 靭性工程是否為未來職業安全新理念的探討. 工業安全衛生, (76), 7-22.
    [8]賴炳樹. (2023). 韌性城市, 淨零城市與氣候變遷因應法. 土地問題研究季刊, 22(1), 151-159.
    [9]FEMAP-58. (2012). Federal Emergency Management Agency: Seismic Performance Assessment of Buildings.
    [10]Molina Hutt, C. (2017). Risk-based seismic performance assessment of existing tall steel framed buildings (Doctoral dissertation, UCL (University College London)).
    [11]王馨儀. (2021). 隔震建築之耐震風險評估方法研究. 國立臺灣大學土木工程學系學位論文, 2021, 1-178.
    [12]戴紹倫. (2021). 鋼筋混凝土建築非線性地震反應之評估研究. 國立臺灣大學土木工程學系學位論文, 2021, 1-255.
    [13]柯玟瑄. (2022). 鋼筋混凝土建築結構與非結構元件非線性地震反應評估研究. 國立臺灣大學土木工程學系學位論文, 2022, 1-227.
    [14]方順建. (2017). 台灣地區綜合風險資訊平台之規劃. 2017. 國立臺灣大學土木工程學系學位論文.
    [15]蕭嘉緯. (2007). 考量風險相關性之地震風險評估研究. 中央大學土木工程學系學位論文, 1-121.
    [16]謝秉諺. (2023). 套管式風力發電機塔柱結構易損性分析. 中央大學土木工程學系學位論文.
    [17]林宜德. (2007). 鋼筋混凝土結構物之地震易損性分析. 中央大學土木工程學系學位論文.
    [18]林文隆. (2007). 鋼筋混凝土結構物之地震易損性分析. 中央大學土木工程學系學位論文, 1-126.
    [19]謝瑋桓. (2017). 中高樓建築機率式耐震與倒塌風險評估之研究. 國立成功大學土木工程學系學位論文
    [20]Court, A., Simonen, K., Webster, M., Trusty, W., & Morris, P. (2012). Linking next-generation performance-based seismic design criteria to environmental performance (ATC-86 and ATC-58). Structures Congress 2012,
    [21]張豐選. (2021). 台北盆地鋼構抗彎矩構架之震損與風險評估. 國立臺灣大學土木工程學系學位論文, 2021, 1-238.
    [22]陳麒壬. (2024). 鋼構建築物之生命週期成本與永續性分析. 國立臺灣大學土木工程學系學位論文, 1-175.
    [23]陳重義. (2013). 營建預算編列要訣.
    [24]Zsarnóczay, A., & Deierlein, G. G. (2020, September). PELICUN–A computational framework for estimating damage, loss and community resilience. In Proceedings, 17th World Conference on Earthquake Engineering,(Sendai: WCEE).
    [25]李坤展 (2022)。數據驅動之鋼筋混凝土構架機率式地震風險評估 [Data-driven probabilistic seismic risk assessment of reinforced concrete frames] (碩士論文)。國立中央大學。
    [26]Peltan, I. D., Rowhani-Rahbar, A., Vande Vusse, L. K., Caldwell, E., Rea, T. D., Maier, R. V., & Watkins, T. R. (2016). Development and validation of a prehospital prediction model for acute traumatic coagulopathy. Critical Care, 20, 1-10.
    [27]NHERI-SimCenter. (2025). pelicun. https://simcenter.designsafe-ci.org/products/backend-components/pelicun/
    [28]公共工程委員會. (2025). 公共工程雲端服務網. https://pcic.pcc.gov.tw/pwc-web/
    [29]Lin, J.-L., Chen, W.-H., Hsiao, F.-P., Weng, Y.-T., Shen, W.-C., Weng, P.-W., Li, Y.-A., & Chao, S.-H. (2020). Simulation and analysis of a vertically irregular building subjected to near-fault ground motions. Earthquake Spectra, 36(3), 1485-1516.
    [30]中華民國產物保險商業同業公會. (2024). 台灣地區住宅類建築造價參考--114年1月1日實施.
    [31]AUTODESK. (2024). How much does it cost to build a house in 2025?
    [32]李宗霖 (2025)。城市規模之機率式地震風險評估開發與應用 [Development and Application of Region-Scale Probabilistic Seismic Risk Assessment] (碩士論文)。國立中央大學。

    QR CODE
    :::