| 研究生: |
林緯昀 Wei-Yun Lin |
|---|---|
| 論文名稱: |
奈米纖維化陰極應用於質子傳輸型固態氧化物燃料電池 Nanofibrous cathodes for proton-conducting solid oxide fuel cells |
| 指導教授: |
李勝偉
Sheng-Wei Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 靜電紡絲 、奈米纖維 、質子傳輸型固態氧化物燃料電池 、陰極 、電化學交流阻抗 |
| 外文關鍵詞: | P-SOFC |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用靜電紡絲技術製備La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)陰極及BaCe0.6Zr0.2Y0.2O3-δ (BCZY)電解質奈米纖維,再將兩者與傳統陰極和電解質粉末混合,製作成質子傳輸型固態氧化物燃料電池之陰極;測量不同混合參數的電池性能(極化曲線)及電化學交流阻抗頻譜,探討陰極端中氣體、氧離子、質子與電子的反應機制。
針對電化學交流阻抗頻譜進行深入分析,以瞭解不同陰極結構在質子傳輸型固態氧化物燃料電池中的反應差異,藉此了解何種材料組合能為電池性能帶來提升。此外,本研究還進行陰極氣體加濕,觀察加濕前後,電池性能的變化與電化學交流阻抗之改變,以瞭解含水氣的空氣對陰極內部反應有何影響。
使用LSCF奈米纖維與純BCZY粉末製成混合陰極時,全電池於800 ℃下測得最佳效能:開路電壓為0.93 V、功率密度峰值為212.5 mW/cm2;因LSCF奈米纖維比純粉末擁有更多和氣體反應的面積,能大幅縮短氣體擴散進入陰極之距離,更能形成氧離子與電子傳輸網路,而不受為非電子導體的BCZY電解質粉末干擾。
The composite cathodes of proton-conducting solid oxide fuel cells (P-SOFC) were fabricated by mixing of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) nanofiber, BaCe0.6Zr0.2Y0.2O3-δ (BCZY) nanofiber, LSCF powder, or BCZY powder. The measurements of cell performance (I-V curve) and electrochemical impedance spectroscopy (EIS) were performed to investigate the chemical reaction mechanism between cathodes, gas, oxygen ions, protons, and electrons. Cell performance were also tested under humidified gas on the cathodes and to investigate the variations of chemical reactions.
The cell with the cathode which is composed of LSCF nanofiber and BCZY powder showed the best performance: 0.93 V for the open circuit voltage (OCV) and 212.5 mW/cm2 for the power density at 800 ℃. The LSCF nanofiber has lager reactive area for gas which can substantially reduce the distance of gas diffusion and forming the “conducting network” for oxygen ions and electrons.
[1] W. R. Grove, “On voltaic series and the combination of gases by platinum”, Philosophical Magazine Series 3, Vol. 14, pp. 127-130, 1839.
[2] Y. A. Cengel, “Thermodynamics: An Engineering Approach”, 7th Edition, McGraw-Hill, USA, 2010.
[3] G. Hoogers, “Fuel Cell Technology Handbook”, 1st Edition, CRC Press, USA, 2002.
[4] 黃鎮江,“燃料電池”,二版,全華圖書股份有限公司,新北市,民國九十四年。
[5] A. L. Lee, R. F. Zabransky, and W. J. Huber, “Internal reforming development for solid oxide fuel cells”, Industrial & Engineering Chemistry Research, Vol. 29, pp. 766-773, 1990.
[6] L. M. Zhang and W. S. Yang, “Direct ammonia solid oxide fuel cell based on thin proton-conducting electrolyte”, Journal of Power Sources, Vol. 179, pp. 92-95, 2008.
[7] M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, and E. D. Bartolomeo, “Influence of the ratio between Ni and BaCe0.9Y0.1O3-δ on microstructural and electrical properties of proton conducting Ni- BaCe0.9Y0.1O3-δ anodes”, Journal of Alloys and Compounds, Vol. 509, pp. 1157-1162, 2011.
[8] B. H. Rainwater, M. F. Liu, and M. L. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, International Journal of Hydrogen Energy, Vol. 37, pp. 18342-18348, 2012.
[9] L. Bi, E. Fabbri, and E. Traversa, “Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs)”, Electrochemistry Communications, Vol. 16, pp. 37-40, 2012.
[10] K. Xie, R. Q. Yan, and X. Q. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3-δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, Vol. 11, pp. 1618-1622, 2009.
[11] H. Moon, S. D. Kim, E. W. Park, S. H. Hyun, and H. S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy, Vol. 33, pp. 2826-2833, 2008.
[12] Z. H. Chen, R. Ran, W. Zhou, Z. P. Shao, and S. M. Liu, “Assessment of Ba0.5Sr0.5Co1-yFeyO3-δ (y = 0.0-1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane”, Electrochimica Acta, Vol. 52, pp. 7343-7351, 2007.
[13] C. A. J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, and K. Yabuta, “Oxide ion diffusion in perovskite-structured Ba1-xSrxCo1-yFeyO2.5: A molecular dynamics study”, Solid State Ionics, Vol. 177, pp. 3425-3431, 2007.
[14] W. Zhou, R. Ran, Z. P. Shao, R. Cai, W. Q. Jin, N. P. Xu, and J. M. Ahn, “Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition”, Electrochimica Acta, Vol. 53, pp. 4370-4380, 2008.
[15] B. Wei, Z. Lü, X.Q. Huang, J. P. Miao, X. Q. Sha, X. S. Xin, and W. H. Su, “Crystal Structure, Thermal Expansion and Electrical Conductivity of Perovskite Oxides BaxSr1-xCo0.8Fe0.2O3-δ (0.3 ≤ x ≤ 0.7)”, Journal of the European Ceramic Society, Vol. 26, pp. 2827-2832, 2006.
[16] H. Inaba and H. Tagawa, “Ceria-based solid electrolytes”, Solid State Ionics, Vol. 83, pp.1-16, 1996.
[17] S. M. Haile, G. Staneff, and K. H. Ryu, “Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites”, Journal of Materials Science, Vol. 36, pp. 1149-1160, 2001.
[18] A. Arabacı and M. F. Öksüzömer, “Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications”, Ceramics International, Vol. 38, pp. 6509-6515, 2012.
[19] L. P. Li and J. C. Nino, “Ionic conductivity across the disorder-order phase transition in the SmO1.5-CeO2 system”, Journal of the European Ceramic Society, Vol. 32, pp. 3543-3550, 2012.
[20] S. Demic, A. N. Ozcivan, M. Can, C. Ozbek, and M. Karakaya, “Recent Progresses in Perovskite Solar Cells”, Nanostructured Solar Cells, IntechOpen, UK, 2017.
[21] T. Takahashi and H. Iwahara, “Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell”, Energy Conversion, Vol. 11, pp. 105-111, 1971.
[22] K. D. Kreuer, “Proton-conducting Oxides”, Annual Review of Materials Research, Vol. 33, pp. 333-359, 2003.
[23] E. Traversa and E. Fabbri, “Proton conductors for solid oxide fuel cells (SOFCs)”, Functional Materials for Sustainable Energy Applications, 1st Edition, Woodhead Publishing, UK, 2012.
[24] N. Agmon, “The Grotthuss mechanism”, Chemical Physics Letters, Vol. 244, pp. 456-462, 1995.
[25] M. Saiful Islam, “Ionic transport in ABO3 perovskite oxides: a computer modelling tour”, Journal of Materials Chemistry, Vol. 10, pp. 1027-1038, 2000.
[26] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, Vol. 138, pp. 91-98, 2000.
[27] K. H. Ryu and S. M. Haile, “Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions”, Solid State Ionics, Vol. 125, pp. 355-367, 1999.
[28] R. B. Cervera, Y. Oyama, and S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3-δ by sol-gel method”, Solid State Ionics, Vol. 178, pp. 569-574, 2007.
[29] Z. R. Wang, J. Q. Qian, J. D. Cao, S. R. Wang, and T. L. Wen, “A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs)”, Journal of Alloys and Compounds, Vol. 437, pp. 264-268, 2007.
[30] T. O. Mason, “Advanced ceramics”, Encyclopædia Britannica, USA, 2016.
[31] J. M. Serra and W. A. Meulenberg, “Thin‐Film Proton BaZr0.85Y0.15O3 Conducting Electrolytes: Toward an Intermediate‐Temperature Solid Oxide Fuel Cell Alternative”, Journal of the American Ceramic Society, Vol. 90, pp. 2082-2089, 2007.
[32] D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?”, Advanced Materials, Vol. 16, pp. 1151-1170, 2004.
[33] X. B. Zhu, Z. Lü, B. Wei, X. Q. Huang, Y. H. Zhang, and W. H. Su, “A symmetrical solid oxide fuel cell prepared by dry-pressing and impregnating methods”, Journal of Power Sources, Vol. 196, pp. 729-733, 2011.
[34] D. Konwar, B. J. Park, P. Basumatary, and H. H. Yoon, “Enhanced performance of solid oxide fuel cells using BaZr0.2Ce0.7Y0.1O3-δ thin films”, Journal of Power Sources, Vol. 353, pp. 254-259, 2017.
[35] H. S. Noh, K. J. Yoon, B. K. Kim, H. J. Je, H. W. Lee, J. H. Lee, and J. W. Son, “The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells”, Journal of Power Sources, Vol. 247, pp. 105-111, 2014.
[36] R. L. Coble, “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models”, Journal of Applied Physics, Vol. 32, pp. 787, 1961.
[37] M. F. Ashby, “A first report on sintering diagrams Dlagrammes de frittage (premier article) Ein erster bericht über sinterdlagramme”, Acta Metallurgica, Vol. 22, pp. 275-289, 1974.
[38] EG & G Technical Services Inc., “Fuel Cell Handbook”, 7th Edition, Department of Energy, USA, 2004.
[39] E. Povoden-Karadeniz, “Thermodynamic database of the La-Sr-Mn-Cr-O oxide system and applications to solid oxide fuel cells”, Swiss Federal Institute of Technology Zurich, degree of doctor, 2008.
[40] N. Y. Hsu, S. C. Yen, K. T. Jeng, and C. C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal Power Sources, Vol. 161, pp. 232-239, 2006.
[41] L. Yang, Z. Liu, S. Z. Wang, Y. M. Choi, C. D. Zuo, and M. L. Liu, “A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors”, Journal of Power Sources, Vol. 195, pp. 471-474, 2010.
[42] R. R. Peng, T. Z. Wu, W. Liu, X. Q. Liu, and G. Y. Meng, “Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes”, Journal of Materials Chemistry, Vol. 20, pp. 6218-6225, 2010.