跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳文男
Wen-Nian Wu
論文名稱: 台灣北部地區之隱沒樣貌
指導教授: 馬國鳳
Kuo-Fong Ma
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球物理研究所
Graduate Institue of Geophysics
畢業學年度: 89
語文別: 中文
論文頁數: 92
中文關鍵詞: Sp轉型波隱沒帶班氏帶
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 經由分析,TWS1與NCU0是本研究中收到相對較多Sp轉型波記錄的兩個測站,而位於隱沒的菲律賓海板塊西側的NCU0測站亦出乎意料地發現為數不少的Sp轉型波存在。此外,TAP1、TAP0、TWB1等三個測站也是相當容易發現Sp轉型波的測站。本研究中發現直達S波與Sp轉型波的相對走時差約在4到10秒間,相對走時差與震央距成一正比關係,但並不與震源深度成正比關係。
    由觀測的直達S波與Sp轉型波的相對走時差,我們描繪出菲律賓海板塊約從北緯24.6∼24.7度之間,在深度40至50公里處約以20度的傾角開始平緩隱沒,到了北緯24.9度傾角增為30度,而過了北緯25.1度後到達深度約70公里,之後似乎以更傾斜的角度隱沒,不過由於在此深度之後本研究並沒有獲得轉型點資料,也因此無法判斷隱沒的菲律賓海板塊在此深處是否存有一轉折。另外,菲律賓海板塊似乎有因邊磧拆層作用在隱沒淺處造成板塊拆層分裂現象。本研究由各分群的平均走時剩餘估算,轉型深度平均總誤差小於10公里,其中當波傳方向接近東西向時,會因速度構造的側向不均性造成較大誤差。


    目 錄 論文提要 i 誌 謝 ii 目 錄 iii 圖 目 v 表 目 viii 第一章 緒 論 1 1.1 研究動機與目的 1 1.2 地質背景 2 1.3 轉型波文獻回顧 7 1.4 本文介紹 10 第二章 資料選取與分析 11 2.1 資料選取 11 2.2 極化濾波 12 2.3 極化分析 18 2.4 粒子運動 21 2.5 採用之資料 22 2.5.1 理論與觀測直達S波與Sp波之走時剩餘 22 2.5.2 直達S波與Sp、SmP轉型波之相對走時差與震央距及震源深度之關係 22 2.5.3 直達S波與Sp轉型波之相對走時差與震央距及震源深度之關係 23 第三章 理論與計算 27 3.1 速度模型 27 3.2 波線追跡 31 3.3 理論走時與轉型深度之計算 36 3.3.1 理論走時之計算 36 3.3.2 轉型深度之計算 38 3.3.3 誤差的估算 38 第四章 結果與討論 41 4.1 分群計算結果與討論 41 4.1.1 群一 44 4.1.2 群二 50 4.1.3 群三 60 4.2 台灣北部地區之隱沒樣貌 67 4.2.1 南北向剖面 67 4.2.2 東西向剖面 71 4.3 速度構造之影響 72 4.4 與前人研究之比較 72 4.4.1 與Ma and Jian的結果比較 72 4.4.2 與Kao and Rau的結果比較 79 4.4.3 與Hsu and Sibuet的結果比較 82 4.5 觀測現象之分析 82 4.5.1 影響觀測轉型波的原因 82 4.5.2 極性 82 4.5.1 振幅比之呈現 84 4.5.1 相對走時差之呈現 85 第五章 結論與未來展望 92 5.1 結論 92 5.2 未來展望 93 參考文獻 94 附 錄 101 圖 目 圖 1.1台灣地質與地震帶分區圖…………………………………...4 圖 1.2台灣地區及其鄰近地體架構圖……………………………...5 圖 1.3轉型波發生位置及地震記錄圖……………………………...8 圖 2.1研究區域使用之地震事件與測站分佈圖…………………...13 圖 2.2地震訊號的空間幾何座標示意圖…………………………...17 圖 2.3原始地震記錄及經極化濾波、極化分析、粒子運動形態比較後之地震資料圖…………………………………………...19 圖 2.4各測站的P波與S波的觀測走時差減去理論計算的走時差之走時剩餘情況……………………………………………...24 圖 2.5(a):S波與Sp波(SSp)、S波與SmP(SSmP)之相對走時差隨震央距關係圖;(b):S波與Sp波(SSp)、S波與SmP(SSmP)之相對走時差隨震源深關係圖……………………………...25 圖 2.6(a):觀測之S波與Sp波相對走時差隨震央距關係圖;(b):觀測之S波與Sp波相對走時差隨震源深關係圖……26 圖 3.1本研究所使用之速度構造示意圖 ……………….…………29 圖 3.2速度網格設置格點圖………………………………………...30 圖 3.3波徑中曲率方向和速度梯度與波線垂直分量之幾何關係示意圖 ……………………………………………………….32 圖 3.4三維連續的速度模型中由兩點擾動找出新點的示意圖...…33 圖 3.5波線追蹤時求出波線在不連續面位置示意圖……………...35 圖 3.6結合PRT與司乃耳定律由初始波徑重覆擾動追蹤波線示意圖……………………………………………………………...37 圖 3.7經地震重新定位所獲得之速度層析結果…………………...39 圖 4.1本研究所採用之地震事件、測站與其波傳路徑圖…………42 圖 4.2群一之波傳路徑圖…….……………………………………..46 圖 4.3群二之理論隱沒幾何樣貌圖………………………………...54 圖 4.4群一計算所得的轉型點位置與深度分佈圖………………...51 圖 4.5群二之波傳路徑圖…………………………………………...52 圖 4.6NCU群之細分群組圖…………………………………………53 圖 4.7群二之理論隱沒幾何樣貌圖………………………………...54 圖 4.8群二計算所得之轉型點位置與深度分佈圖………………...61 圖 4.9群三之波傳路徑圖…………………………………………...62 圖 4.10群三之理論隱沒幾何樣貌圖………………………………...63 圖 4.11群三之轉型點位置與深度分佈圖…………………………...66 圖 4.12(a)本研究所得之轉型點位置與深度分佈……………………...68 圖 4.12(b)本研究結果之南北向剖面…………………………………...69 圖 4.12(c)本研究結果之東西向剖面 ………………………………….70 圖 4.13Ma and Jian(1998)所使用的地震事件位置與測站及其波傳路徑………………………………………………………...74 圖 4.14Ma and Jian(1998)計算所得之轉型點位置與深度分佈圖75 圖 4.15本研究所得之結果與Ma and Jian(1998)所得之結果比較.76 圖 4.16本研究結果與Ma and Jian(1998)結果之南北向剖面之比較………………………………………………………….77 圖 4.17本研究結果與Ma and Jian(1998)結果之東西向剖面之比較………………………………………………………….78 圖 4.18Kao et al.(1998)描繪出菲律賓海板塊的上部邊界……………………………………….……………………..80 圖 4.19Kao and Rau(1999)結合三維速度構造、震源機制、及地震重新定位的結果..……………………….…………….81 圖 4.20Hsu and Sibuet(2001)選用重新地震定位後的地震活動分佈之上緣所描繪出之菲律賓海板塊的上部邊界…………..83 圖 4.21峰-谷振幅值選取範例 ………………………………………87 圖 4.22各測站之振幅比值比較圖 ………………………………….88 圖 4.23依轉型點位置繪製的振幅比分佈圖………………………...89 圖 4.24依轉型位置繪製相對走時差分佈圖………………………...90 圖 4.25相對走時差各測站之比較圖 ….……………………………91 表 目 表 4.1(a):各層速度改變1.06倍(增加6%)造成之轉型深度改變量;(b):各層速度改變1.06倍(增加6%)造成之走時剩餘改變量….…………………………………………43 表 4.2(a):各層速度改變1.12倍(增加12%)造成之型深度改變量;(b):各層速度改變1.12倍(增加12%)造成之走時剩餘改變量……………………………………………….44

    參考文獻
    Bataille, K and J.-M. Chiu, 1991. Polarization analysis of high-frequency, 3-component seismic data, Bull. Seism. Soc. Am., 81, 622-642.
    Bowin, C., Lu, R., Lee, C.-S. and Shouten, H., 1978. Plate convergence and accretion in Taiwan-Luzon region, Am. Assoc. Pet. Geol. Bull., 62, 1645-1672.
    Cerveny, V., 1983. Synthetic body wave seismograms for laterally varying layered structures by the Gaussian beam method, Geophys. J. R. Astr. Soc., 73, 389-426.
    Chiao, L.-Y., H. K, S. Lallemand and Liu, C.-S., 2001. An alternative interpretation for slip vector residuals of subduction interface earthquakes: a case study in the westernmost Ryukyu slab, Tectonophysics, 333, 123-134.
    Eberhar, P.D and M. Reyners, 1999. Plate interface properties in the northeast Hikurangi subduction zone, New Zealand, from converted seismic waves. Geophys. Res. Lett., 26, 2565-2568.
    Flinn, E. A., 1965. Signal analysis using rectilinearty and direction of particle motion, Pro. I.E.E.E., 53, 1874-1876.
    Hagen, R. A., and F. K. Duennebier, 1988. A seismic refraction study of the crustal structure in the active seismic zone east of Taiwan, J. Geophys. Res., 93, 4785-4796.
    Helffrich, G. and Abers, G. A., 1997. Slab low-velocity layer in the Eastern Aleutian subduction zone, Geophys. J. Int., 130, 640-648.
    Helffrich G. R. and S. Stein, 1993. Study of the structure of the slab-mantle interface using reflected and converted seismic waves, Geophys. J. Int., 115, 14-40.
    Herman, B. M., Anderson, R. N., and Truchan, M., 1978. Extensional tectionics in the Okinawa Trough, geological and physical investigations of continental margins, edited by J. S. Watkins, L. Montadert, and P. W. Dickinson, Mem. Am. Assoc. Pet. Geol., 29, 199-208.
    Hsu, M.-T., 1971. Seismicity of Taiwan and some related problems, Bull. Intl. Inst. Seismol. Earthquake Eng., 8, 41-160.
    Hsu, S.-K. and Sibuet J. C. 2001. Slab tear in the northwestern Pilisppine sea plate: implication for magma production in the south Okinawa Trough. submitted to Earth Planet. Sci. Lett.
    Jurkevics, A., 1988. Polarization analysis of three-component array data, Bull. Seism. Soc. Am., 78, 1725-1743.
    Kao, H., S. J. Shen, and K.-F. Ma, 1998. Transition from oblique subduction to collision: earthquakes in the southernmost Ryukyu arc-Taiwan region. J. Geophys. Res. 103, 7211-7229.
    Kao, H., and R.-J. Rau, 1999. Detailed structures of the subducted Philisppine sea plate beneath northeast Taiwan: a new type of double seismic zone. J. Geophys. Res. 104, 1015-1033.
    Lallemand, S. E., Liu, C.-S. amd Font, Y., 1997. A tear fault boundary between the Taiwan orogen and the Ryukyu subduction zone. Tectonphysics, 274, 171-190.
    Lee, C.-N., 1962. Distribution of earthquake foci in the Taiwan region and its tectonic significance., Proc. Of the Geol. Soc. China, 5, 109-118.
    Lin, C.-H., B.-S. Huang, R.-J. Rau, 1999. Seimological evidence for a lower-velocity layer with subducted slab of southern Taiwan. Earth and Planet. Sci. Let., 231-240.
    Ma, K.-F., J.-H.Wang, and D.Zhao, 1996. Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan, J.Phys.Earth, 44, 85-105.
    Ma, K.-F. and N.-J. Liu, 1997. The images of subduction slabs in the Taiwan Region, J. Geol. Soc. China, 40, 653-670.
    Ma, K.-F. and D.-R. Song, 1997. Pn velocity and Moho depth in Taiwan, J. Geol. Soc. China, 40, 167-184.
    Ma, K.-F and P.-R. Jian, 1998. The morphology of subducting slab beneath northern Taiwan, Western Pacific Geophysical Meetings, Taiwan.
    Matsuzawa, T., Umino, N., Hasegawa, A. and Takagi, A., 1986. Upper mantle velocity structure estimated from PS-converted wave beneath the northeastern Japan arc. Geophys. J. R. Astron. Soc., 86, 767-787.
    Matsuzawa, T., T. Kono, A. Hasegawa, and A. Takagi, 1990. Subducting plate boundary beneath the northeastern Japan arc estimated from SP converted waves, Tectonphysics, 181, 123-133.
    Nakanishi, I., 1980. Precursors to ScS phases and dipping interface in the upper mantle beneath southwestern Japan, Tectonophysics. 69, 1-35.
    Okada, H., 1971. Forerunners of ScS waves from nearby deep earthquakes and upper mantle structure in Hokkaido, J. Seimol. Soc. Japan, 24, 228-239.
    Okada, H., 1979. New evidence of the discontinuous structure of the descending lithosphere as revealed by ScS phase, J. Phys. Earht, 27 Suppl., S53-S64.
    Ohmi, S. and Sadaki, H., 2000. Seismic wave conversion near the upper boundary of the Pacific plate beneath the Kanto district, Japan, Geophys. J. Int., 141, 136-148.
    Pezzopane, S. K., and Wesnousky, S. G., 1989. Large earthquakes and crustal deformation near Taiwan. J. Geophys. Res., 97, 11749-11759.
    Rau, R.-J., and F. T. Wu, 1995. Tomographic imaging of lithospheric structures under Taiwan, Earth Planet. Sci. Lett., 133, 517-532.
    Sacks, I. S. and J. A. Snoke, 1977. The use of converted phases to infer the depth of the lithosphere-asthenosphere boundary beneath South America, J. Geophys. Res. 82, 2011-2017.
    Shin, T.-C., 1993. The calculation of local magnitude from the simulated Wood-Anderson seismolograms of the short-period seismolograms in the Taiwan area, Terr. Atmos. Oceanic Sci., 4, 155-170.
    Sibuet, J. C., Letouzey, J., Barbier, F., Charvet, J., Foucher, J. P., Hilde, T. W.C., Kimura, M., Chiao, L.-Y., Marsset, B., Muller, C., and Stephan, J.F., 1987. Back arc extension in the Okinawa trough, J. Geophys. Res., 92, 14041-14063.
    Snoke, J. A., I. S. Sacks, and H. Okada, 1977. Determination of the subducting lithosphere boundary by use of converted phase. Bull. Seism. Soc. Am. 67, 1051-1060.
    Stefani, J. P., R. J. Robert and G. C. Kroeger, 1982. A direct measurement of the distance between a hypocenter in a Benioff-Wadati zone and the slab-asthenosphere contact. J. Geophys. Res. 87, 323-328.
    Stephens, C. D., R. A. Page, and J. C. Lahr, 1990. Reflected and mode-converted seismic waves within the shallow Aleutian subduction zone, souuthern Kenai Peninsula, Alaska. J. Geophys. Res. 95, 6883-6897.
    Thirot, J. L., J. P, Montager and L.Vinnik, 1998. Upper-mantle seismic discontinuities in a subduction zone(Japan) investigated from P to S converted waves. Phys. Earth Planet. Inter., 61-80.
    Tsai, Y.-B., T. L. Teng, J.-M. Chiu, H.-L. Liu, 1977. Tectonic implications of the seismicity in the Taiwan region, Mem. Geol. Soc. China, 2, 13-41.
    Tsai, Y-B., Z.-S. Liaw, T.-Q. Lee, M.-T. Lin, and Y.-H. Yeh, 1981. Seismological evidence of an active plate boundary in the Taiwan region, Mem. Geol. Soc. China, 4, 143-154.
    Teng, L. S. 1996. Extensional collapse of the northern Taiwan mountain belt, Geol., 24, 949-952.
    Tsumura, N., Hidemasa I., Takashi I., Masano S., Tanio I., Kazunori A., Takeo Moriya., Takwshi I., 1999. Delamination-wedge structure beneath the Hidaka collision zone, central Hokkaido, Japan inferred from seismic reflection profiling, Geophys. Res. Lett., 26, 1057-1060.
    Um, J. and Thurber, C. H., 1987. A fast algorithm for two-point seismic ray tracing, Bull. Seism. Soc. Am. 77, 972-987.
    Vidale, J. E., 1986. Complex polarization analysis of particle motion, Bull. Seism. Soc. Am., 76, 1393-1405.
    Wang, J.-H., 1988. b values of shallow earthquakes in Taiwan, Bull. Seismol. Soc. Amer., 78, 1243-1254.
    Wu, F.T., 1978. Recent tectonics of Taiwan, J. Phys. Earth, 26, suppl., S265-S299.
    Wicks, C.W. and Richards, M.A., 1991. Effects of source radiation patterens on the phase S670P beneath the Tonga subduction zone, Geophy. J. Int., 107, 279-290.
    Zhao, D., A. Hasegawa, and Horiuchi, 1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan, J. Geophys. Res., 97, 19909-19928.
    Zhao, D., 1993. P wave tomographic imaging of the crust and upper mantle beneath the Japan Islands. J. Geophys. Res., 98, 4333-4353.
    Zhao, D., T. Matsuzawa and A. Hasegawa, 1997. Morphology of the subducting slab boundary in the northeastern Japan arc, Phys. Earth Planet. Inter., 102, 89-104.
    Zelt, C. A., and R. B. Smith, 1992. Seismic travel time inversion for 2-d crustal velocity, Geophy. J. Int., 108, 16-34.
    何春蓀,1986. 台灣地體構造的演變,台灣地質說明書,經濟部中央地質調查所,台北,126頁。
    沈聖書,1996. 由波形逆推地震震源機制解探討台灣東北外海隱沒與碰撞構造之特性,國立中央大學地球物理研究所碩士論文,177頁。
    陳燕玲,1995. 台灣地區三維速度構造與隱沒構造之相關探討,國立中央大學地球物理研究所碩士論文,172頁。
    劉乃菁,1995. 由三維速度影像探討台灣地區隱沒帶特性,國立中央大學地球物理研究所碩士論文,80頁。

    QR CODE
    :::