| 研究生: |
盧宏傑 Hung-Chieh Lu |
|---|---|
| 論文名稱: |
含二氮雜菲-烷基噻吩之共軛分子、高分子及 Syntheses of oligoalkylthiophene substituted-phenanthroline containing conjugated molecules, plymers and metal complexes and their apllication in luminescence ionsensors |
| 指導教授: |
吳春桂
Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 離子感應器 、二氮雜菲-烷基噻吩 |
| 外文關鍵詞: | phenanthroline, ionsensor |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
共軛高分子因其應用的多元性成為學界與業界的主要研究材
料,其中含有-C=N- ( imine ) 結構的共軛高分子漸受重視。此類高分
子除了具有一般有機物特性可合成出各種的衍生物外,其-C=N-官能
基具有能與不同金屬離子反應而改變共軛分子光色的性質,因此可做
為螢光化學感應器。此外,含-C=N-鍵之共軛分子可做為配位基與金
屬鍵結形成金屬錯合物,進一步調變其發光顏色。本研究利用
Yamamoto 與Stille coupling 合成出一系列含 -C=N- 鍵結之二氮雜菲-
烷基噻吩共軛分子、高分子及金屬錯合物,並利用1H-NMR、Mass、
EA 鑑定其結構以及GPC 測量高分子之分子量,再利用UV/Vis 及 PL
光譜的改變來測試其做為離子感應器的可能性。結果顯示不同共軛分
子與不同離子作用時有不ㄧ樣的改變且高分子的鍵結能力無論是對
金屬離子或H+皆比相對的單體強,顯示出高分子對離子的靈敏度較
佳。其中,POTPhOT 在加入不同濃度之Hg+2 後,其螢光的強度幾乎
是以倍數的程度減弱,如此有規則的變化,意味著POTPhOT 有應用
做為檢測重金屬Hg+2 濃度的可能性。
Conjugated polymers are under extensively studied at both academia
and industry, due to their widely applications. Polymer containing the
-C=N-( imine ) group has been noticed recently. This type of conjugated
polymer not only has the characteristic of a typical organic material with
various types of derivatives but also reacts with metal ions or acid to alter
their photophysics. Therefore they can be used as luminescence
chemsensor. Furthermore, they are also good ligands for metal: the
luminescence light of the formed complexes is different from the
conjugated ligand. In this thesis a series of -C=N- contaning conjugated
molecules, conjugated polymers and metal complexes were synthesized
using Yamamoto coupling and Stille coupling. The materials are
characterized by 1H-NMR, Mass, EA, and GPC. The UV/Vis and PL
spectra were then used to test the possibility of using these materials in
ion-sensing applications. It was shown that the optical properties of the
imine containing monomers and polymers changed when they reacted
with proton or metal ions. The binding constants of polymers with metal
ion or H+ are higher than that of the corresponding monomers, indicating
that polymers have higher reactivity toward cation compared to the
corresponding monomers. Interestingly, when POTPhOT was reacted
with Hg+2, the decrease in the luminescence intensity is proporational to
the concentration of Hg+2 ion. This result suggested that POTPhOT can
be used to detect Hg+2 ion not only qualitatively but also quantitatively.
1. Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa,
H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Phys. Rev. Lett. 1977,
39, 1098–1101.
2. Chien, J. C. W. “Polyacetylene:Chemistry, Physics, and Material
Science”, Academic Press, Orlando, 1984.
3. Gazz, A. A. Chim. Ital. 1916, 46, Ⅱ279.
4. http://webpages.charter.net/dmarin/coat/#Conc
5. Dall, Olio A.;Dascola, G.;Varacca, V.;Bocchi, V. Acad. Sci. Ser.
1968, 433, C267.
6. Chen, T.-A.;Wu, X.;Rieke, R. D. J. Am. Chem. Soc. 1995, 117,
233-244.
7. Burroughes, J. H.;Bradley, D. D. C.;Brown, A. R.;Marks, R. N.;
Mackay, K.;Friend, R. H.;Burns, P. L.;Holmes, A. B. Nature 1990,
347, 539-541.
8. Braun, D.;Heeger, A. J. Appl. Phys. Lett. 1990, 58, 1982-1984.
9. Susan, K.;Vanderkam, E. S.;Gawalt, J. S.;Bocarsly, A. B. Langmuir.
1999, 15, 6598-6600.
10. http://www.che.chalmers.se/inst/pol/.
11. Wood, A. S. “Tapping the power of intrinsic conductivity”, Modern
Plastics Int., Aug. 1991, 33.
12. Pope, M. ; kallmann, H. P. ; Magnante, P. J. Chem. Phys. 1963, 38,
2042.
108
13. Tang, C. W. and VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
14. Burroughes, J. H.;Bradley, D. D.;Brown,C. A.;Marks, R. R.;
Mackay, N. K. Friend, R. H.;Burns, P. L.;Holmes, A. B. Nature
1990, 347, 539.
15. Osaka, T. ; Komada, S. ; Fujihana, K. ; Okamoto, N. ; Kaneko, N. J.
Electrochem. Soc. 1997, 114, 743.
16. Epstein, A. J.;Ginder, J. M.;Bigelow, R. W. and MacDiamid, A. G.
Synth. Met. 1987, 18, 303.
17. Leonid, M. G.; Martin, R. B.; Michael, C. P. J. Mater. Chem. 1999,
9, 1957.
18. Crawford, K. B.; Goldfinger, M. B.; Swager, T. M. J. Am. Chem.
Soc. 1998, 120, 5187.
19. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A.
J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev.
1997, 97, 1515.
20. Fluorescent Chemosensors for Ion and Molecule Recognition. ACS
Symp. Ser. 1993, 538.
21. McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev. 2000,
100, 1537.
22. Zhou, Q.; Swager, T. M. J. Am. Chem. Soc. 1995, 117, 12593.
23. Swager, T. M. Acc. Chem. Res. 1998, 31, 201.
24. Dio, S.; Kuwabara, M.; Noguchi, T. Synth. Met. 1993, 55-57, 4174.
25. Khandwe, M.; Bajpai, U. D. N. Macromolecules 1991, 24, 5203.
26. Belfiere, L. A. Polym. Prepr. 1992, 33, 925.
27. Tamao,K.; Sumitani, K.; Kiso,Y.; Kumada, M. Bull.Chem. Soc. Jap.
109
1976, 49, 1958.
28. Youssoufi, H. K.; Hmyene, M.; Garnier, F.; Delabouglise, D. J. Chem.
Soc. Chem. Commun. 1993, 1550.
29. Collin, J. P.; Sauvage, J. P. J. Chem. Soc., Chem. Commun. 1987,
1075.
30. Ba¨uerle, P.; Sc heib, S. Adv. Mater. 1993, 5, 848.
31. Miyazaki, Y.; Yamamoto, T. Chem. Lett. 1994, 41.
32. Sable, E.; Handel, E.; L’Her, M. Electrochim. Acta. 1991, 36, 15.
33. McCullough, R. D.; Williams, S. P. Chem. Mater. 1995, 7, 2001.
34. Marsella, J. M.; Carroll, P. J.; Swager, T. M.; J. Am. Chem. Soc. 1995,
117, 9831.
35. Brockmann, T. W.; Tour, J. M. J. Am. Chem. Soc. 1995, 117, 4437.
36. Marsella, M. J.; Swager, T. M. J. Am. Chem. Soc. 1993, 115, 12214.
37. Marsella, M. J.; Newland, P. J.; Carrol, P. J.; Swager, T. M. J. Am.
Chem. Soc. 1995, 117, 9842.
38. Yamamoto, T.; Zhou, Z.-H.; Maruyama, T.; Yoneda, Y.; Kanbara,
T. Chem. Lett. 1990, 223.
39. Yamamoto, T.; Lee, B.-L.; Hayashi, H.; Saito, N.; Maruyama, T.
Polymer 1997, 38, 4233.
40. Yamamoto, T.; Saitoh, Y.; Anzai, K.; Fukumoto, H.; Yasuda, T.;
Fujiwara, Y.; Choi, B.-K.; Kubota, K.; Miyamae, T.
Macromolecules 2003, 36, 6722-6729.
41. Marc Baldo, April 10, 2003 –Organic Optoelectronics– Lecture 17.
42. Yasuda, T.; Yamaguchi, I.; Yamamoto, T. Adv. Mater. 2003, 15,
293.
43. Yamamoto, T.; Lee, B.-L.; Hayashi, H.; Saito, N.; Maruyama, T.
110
Polymer 1997, 38, 4233.
44. O’Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl.
Phys. Lett., 1999, 74, 442.
45. Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.;
Forrest, S. R. Appl. Phys. Lett., 1999, 75, 4.
46. Thompson, M. E.; Burrows, P. E.; Forrest, S. R. Cur. Opinion Solid
State Mater. Sci., 1999, 4, 369.
47. Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature, 2000, 403,
750.
48. Alpha, B.; Lehn, J. M.; Mathis, G. Angew. Chem. Int. Ed. Engl. 1987,
26, 266.
49. Hung, L. S.; Cheng, C. H. Materials Science and Engineering R:
Reports 2002, 39, 143.
50. Holmes, R. J.; Forrest, S. R.; Tung, Y. J.; Weong, R. C.; Brown, J. J.;
Garon, S.; Thompson, M. E. Appl. Phys. Lett., 2003, 82, 2422.
51. Holmes, R. J.; D’Andrade, B. W.; Forrest, S. R.; Ren, X.; Li, J.;
Thompson, M. E. Appl. Phys. Lett., 2003, 83, 3818.
52. Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl.
Phys. 2000, 90, 5048.
53. Wang, B.; Wasielewski, M, R. J. Am. Chem. Soc. 1997, 119, 12.
54. Pierola, I. F.; Turro, N. J.; Kuo, P.-L. Macromolecule 1985, 18,
508.
55. Yamamoto, T.; Saitoh, Y.; Anzai, K.; Fukumoto, H.; Yasuda, T.;
Yoshiki, T. Macromolecules 2003, 36, 6722-6729.
56. Gao, F. G.; Bard, A. J. Chem. Mater. 2002, 14, 3465-3470.
57. Brizius, G.; Kroth, S.; Bunz, U. H. F. Macromolecules 2002,35, 5317.
111
58. Petoud, S.; Cohen, S. M.; Bunzli, Jean-Claude G.; Raymond, K. N. J.
Am. Chem. Soc. 2003, 125, 13324-13325.
59.陳亮年,2004,國立中央大學化學所碩士論文。
60. Wang, J.-B.; Qian, X.; Cui, J. J. Org. Chem. 2006, 71, 4308-4311.