| 研究生: |
陳正豪 Jheng-Hao CHEN |
|---|---|
| 論文名稱: |
對Gaver-Stehfest公式之研究與探討 |
| 指導教授: |
李顯智
Hin-Chi Lei |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | Gaver-Stehfest 、拉普拉斯轉換 、常微分方程 |
| 外文關鍵詞: | Gaver-Stehfest, Laplace transform, ODES |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討內容為:1.取12個函數進行Gaver-Stehfest公式之模擬誤差討論,2.利用簡單的變數轉改變Gaver-Stehfest公式之探討,3.應用於常微分方程時函數之局部計算及延伸探討。
經初步研究討論,利用Gaver-Stehfest公式之數值模擬時,對於振盪之函數有定性上的誤差;而利用簡單的變數轉換,透過時間平移觀念,其能夠減緩並延長模擬的效果;在常微分方程應用上,利用局部計算之方式,能減少誤差之產生,在延伸方面之探討,時間越長其所採之時間間隔須越小,方能減少誤差之產生。
This research includes the following issues:1.Investigating the simulation error induced by using the Gaver-Stehfest formula, 2.Improving the power of the Gaver-Stehfest formula by using some theorems about Laplace transform, 3.Investigating the application of the Gaver-Stehfest formula to differential equations.
We found that when simulating the functions with oscillations the Gaver-Stehfest formula induced errors after one cycle of oscillation. This kind of drawback can be improved if we use some theorems about Laplace transform to reduce the error. When treating ODES we can extend the effective region of the Gaver-Stehfest formula by some technique of local extension.
[1]. B.davies and B Martin, ”Numerical inversion of
the Laplace transform: a survey and comparision of
methods.” J. Computational Plrys,,33 (1979) 1-32
[2]. C. Montella, ” LSV modeling of electrochemical
systems through numerical inversion of inversion of
Laplace transform. I-The GS-LSV algorithm.”J.
Electroamalytical chemistry, 614(2008)121-130.
[3]. D. P. Gaver, Jr., ”Observing stochastic processes,
and approximate transform inversion.” Operational
Res., 14(1966) 444-459
[4]. D. W. Widder, “ The inversion of the Laplace
integral and the related moment problem,” Amer.
Meth. Soc. Trans 36 (1934)107-200
[5]. D. W. Widder, The Laplce Transform. Princeton
University Press, Princetion, NJ.(1946)
[6]. E. Detournay and A. H-D. Cheng, “ poroelastic
response of borehole in a non-hydrostatic stress
field.” Int. J. Rock. Meth. Min. Sci.& Geomech.
Abstr, 25 (1988) 171-182.
[7]. E. L. Post, “ Generalized differentiation.” Trans.
Amer. Meth. Soc., 32 (1960) 723-781
[8]. G. Apada and L. Boschi, ” Using the Post-widens
formula to compute the Earth’s viscoelastic Love
numbers.” Geophys. J. Int, 166(2006)309-326.
[9]. H. Dubner and J. Abate, J.Assoe. Comput. Mach., 15
(1968) 92.
[10]. H.Dubner, Math. Comput., 58 (1992) 729.
[11]. H. Stehfest, Comm. Acm., 13 (1970) 47.
[12]. H.S. Chohan, R.S. Sandhu and W.E. Wolfe, ”A semi
-discrete procedure for dynamic response analysis
of saturated soils.” Int. J. Numer. Analyt. Meth.
Geomech., 15 (1991) 471-496.
[13]. J. Abate and H. Dubner, SIAM J. Numer.Anal., 5
(1968)102
[14]. J.R. Booker. And J.C. Small, "A method of
computing the consolidation behavior of layered
soils using direct numerical inversion of laplace
transform,” Int. J. Numer. Analyt. Meth. Geomech.,
11 (1987) 363-380
[15]. R. A. Schapery, ” approximate methods of transform
inversion for viscoelast -ic stress analysis”
Proc.4th.U.S. Nat.Congress.
[16]. S.L. Chen, L.M. Zhang and L.Z Chen,“ Consolidation
of a finite transverse -ly isdropic soil layer on a
rough impervious base.” Journal of Engrg. Mech.
ASCE, 131 (2005) 1279-1290.
[17]. R.K.N.O. Rajapakse and T. Senjuntichai,” An direct
boundary integral equation method for
poroelasticity."Int. J. Numer. Analyt. Meth.
Geomech., 19 (1995) 587-614
[18]. S. Sykore, V. Bortollotti and P. Fautazzini,
“PERFIDI: parametrically enabled relaxation filters
winth double and multiple inversion.” Magnetic
Resonance Imaging 25(2007)529-532
[19]. T. Senjuntichai and R. K. N. D. Rajapakse, “
Transient response of a circular cavity in a
poroelastic medium. Int. J. Numer. Analyt. Meth.
Geomech., 17(1993)357-383