跳到主要內容

簡易檢索 / 詳目顯示

研究生: 沈立宗
Li-Tsung Sheng
論文名稱: 顆粒崩塌流場之動力行為: 實驗與模擬之研究
Dynamics of Granular Avalanches:An Experimental and Numerical Study
指導教授: 蕭述三
Shu-San Hsiau
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 100
語文別: 英文
論文頁數: 107
中文關鍵詞: 顆粒流崩塌流顆粒體積佔有率二相流模型
外文關鍵詞: granular flow, avalanches, solid volume fraction, two-phase model
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 顆粒材質在傾斜面上經重力驅動造成流動的現象是在許多工業上重要的應用或常見於地球物理相關領域。而目前諸多對於此類崩塌流場的學術研究,皆視為一個顆粒流的狀態,即針對一堆粒子所造成崩塌流場的現象去做其分析研究,所以顆粒崩塌流的研究,成為此類研究核心的部份,也是最基礎與最重要的部份。
    本論文將針對顆粒崩塌流場的動力行為在實驗與模擬上做為研究。
    在實驗部分將提出一個透過表面量測方法來估算當顆粒流體於矩形滑道中加速運動時的體積佔有率之變化。我們將設計一個傾斜角可變動且長150公分、寬5公分的矩形流槽。利用四個不同的傾斜角來做顆粒體加速運動的測試量測,而角度的變化範圍也包含了所使用的顆粒體的內部摩擦角。為了觀察顆粒體運動時自由表面與底層表面加速運動的情形,在滑道上下兩側均架設鏡子,以反射出顆粒運動時的影像。之後再利用PIV(Particleimage velocimetry)去計算顆粒流體的速度與流體厚度,且利用電子天秤去量測流體的質量流率,接下來利用線性內差去計算出流體的體積流率並推算出最後的顆粒體積佔有率。此外我們也將針對此線性內差去做敏感性的測試(Sensitivity analysis),經過分析過後發現誤差約為±6%,也就是說我們所選用的內差法對於所計算出來的顆粒體積佔有率並沒有太大的影響。而最後所計算出來的顆粒體積佔有率,我們也將透過直接擷取量測的方法去做一個驗證,也證明利用內差法所計算出來的結果是正確的。相較於其他非直接量測的方法,例如:MRI (Magnetic resonance imaging) 或PEPT(Radioactive positron emission particle tracking),本論文所發展出來的方法是比較符合經濟效益以及安全性的方法。在四個不同傾斜角的實驗測試中所推算出的體積佔有率的變化分佈,可以發現呈現兩種現象。而此分界點也剛好是顆粒體的內部摩擦角。兩個較小的傾斜角測試中,體積佔有率呈現線性遞減。但較大的兩個傾斜角則呈現出凹面曲線(concave)的分佈。
    而在模擬部分,本論文也發展一個針對乾顆粒流場的運動行為之二相混合動力模型,此乾顆粒流場之間隙流體將視為空氣。此模型為包含二相的質量守恆及動量守恆方程式的二維動力模型。流體在流動過程中,空氣進出流體表面的物理現象也被考慮於此動力模型,而且空氣進出顆粒流體的量與顆粒流體擠壓或拉伸行為有關。因顆粒體與空氣之密度相差甚大,經過因次分析之後,模型統御方程式也呈現流體運動行為被顆粒體所主導的現象,也導致固氣二相速度差距很小。數個模擬測試結果也展現出此模型理論可對於顆粒流場運動行為做一預測之能力, 第一個測試為模擬一個穩態流場流經一個隆起物。第二個測試則模擬流體在一個平面上,且初始狀態為一個不穩定狀態的流動行為。第三個測試則是在各種不同初始狀態下,模擬壩體崩塌的問題。第四個測試則模擬一團有限質量的顆粒流體於傾斜面崩塌並最後於平面上沉積的流動行為。最後也將模擬結果與實驗結果做對照,皆呈現出非常吻合的結果。期待本論文的研究結果對於未來探討顆粒崩塌流場相關研究有新的參考價值。


    Rapid flows of granular materials on inclined surfaces are often encountered in engineering applications involving mineral and food processing, bulk materials handling, and they are also found in geophysical situations. In the geophysical context, rock-falls, landslides and snow-slab avalanches set up to large-scale granular materials in motion. Because of the importance of industrial and geophysical applications, granular chute flow down inclines is a popular fundamental research issue of rapid flows.
    In this thesis, we detail a method for estimating the flux-averaged solid fraction of a steady granular flows moving down an inclined rectangular chute using velocity measurements from along the perimeter cross-section, combined with knowledge of the mass flow rate through the cross-section. The chute is 5 cm wide and 150 cm long with an adjustable inclination angle. Four inclination angles, from 27◦ to 36◦ at 3◦ intervals are tested. This angle range overlaps the internal friction angle of the glass beads, which are of 4 mm nominal diameter. Two slender mirrors are installed at the top and the bottom of the transparent chute to reflect images of the flow down the chute of the two surfaces. This allows photographic recording of the flow with a PIV imaging system and measurement of the flow depth. The mass flow rate can be calibrated simultaneously by collecting the accumulated mass at the chute exit. A linear interpolation scheme is proposed to interpolate the volume flow rate in each section of the chute. Sensitivity analysis suggests that the relative standard deviation of this scheme is about ±6%, i.e., the resultant solid volume fraction is only moderately dependent on the interpolation scheme for the tested cases. This is further confirmed by a direct intercepting method. Compared to the sophisticated magnetic resonance imaging (MRI) or the radioactive positron emission particle tracking (PEPT) methods, the present method is verified as a cost-effective and nonhazardous alternative for ordinary laboratories. Two distinct groups of streamwise dependence of the solid fractions are found. They are seperated by the inclination angle of the chute which agreed with the internal friction angle. In the experiments by using two smaller inclination angles, the solid fraction ratios are found to be linear functions of the streamwise distance, whilst for the two larger inclination angles, the ratios have a nonlinear concave shape. All decrease with growing downstream distance.
    Dry granular flows are also modeled in this thesis by utilizing a set of equations akin to a two-phase mixture system, in which the interstitial fluid is air. The resultant system of equations for a two-dimensional configuration includes two continuity and two momentum balance equations for the two respective constituents. The density variation is described by considering the phenomenon of air entrainment/extrusion at the flow surface, where the entrainment rate is assumed to be dependent on the divergent or convergent behavior of the solid constituent. The density difference between the two constituents is extremely large, so, as a consequence scaling analysis reveals that the flow behavior is dominated by the solid species, yielding small relative velocities between the two constituents. A non-oscillatory central (NOC) scheme with total variation diminishing (TVD) limiters is implemented. Four numerical examples are investigated: the first one considers that a steady flow moves over a bump; the second is related to the flow behaviors on a horizontal plane with an unstable initial condition; the third example is devoted to simulating a dam-break problem with respect to different initial conditions; and the fourth one investigates the behavior of a finite mass of granular material flowing down an inclined plane. Moreover, the simulation results also compare with the experimental results. It is demonstrated that the simulations and experimental observations are in excellent agreement. The key features and the capability of the equations to model the behavior are illustrated in these numerical results.
    The works in this thesis are relatively fundamental. However, these issues are important for investigating the dynamic behavior of dry granular avalanches. We wish that the results will bring some new information to the research field and also contribute to related industries.

    Chinese Abstract i Abstract iii Contents v List of Figures vii List of Tables xi 1 Introduction 1 2 Experimental Setup and Technique 7 2.1 Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Rectangular chute setup . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Photographic system and load cell . . . . . . . . . . . . . . . . . . . 10 2.2 Experimental Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Optical path effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Flow height measurement . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 Velocity field measurement . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.4 Mass flow rate measurement . . . . . . . . . . . . . . . . . . . . . . 15 2.2.5 Calculation of the solid fraction . . . . . . . . . . . . . . . . . . . . 17 3 A Two-Phase Mixture Theory for Dry Granular Avalanches 22 3.1 Equations of Conservative Laws . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Constitutive Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 Depth Integration and Non-dimensional Model Equations . . . . . . . . . . 28 4 Experimental Results of Solid Fraction Variations 34 4.1 Flow Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Velocity Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3 Velocity Fluctuation Intensity . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Solid Fraction Variation of Dry Granular Flows . . . . . . . . . . . . . . . 42 4.5 Validation with Direct Intercepting Method . . . . . . . . . . . . . . . . . 50 5 Simulation Results of Dry Granular Flows 56 5.1 Steady Flow Moving Over a Bump . . . . . . . . . . . . . . . . . . . . . . 57 5.2 Flows on a Horizontal Plane with an Unstable Initial Condition . . . . . . 60 5.3 Dam-Break Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4 Finite Mass of a Granular material Moving Down an Inclined Flat Chute onto a Horizontal Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.5 Comparison between Theoretical Prediction and Experimental Results . . 75 6 Conclusions 78 Bibliography 83

    [1] T. Takahashi. Debris flow. Ann. Rev. Fluid Mech., 13:57–77, 1981.
    [2] H. Itoh, J. Takahama, M. Takahashi, and K. Miyamoto. Hazard estimation
    of the possible pyroclastic flow disasters using numerical simulation
    related to the 1994 activity at Merapi Volcano. J. Volcanol. Geotherm. Res.,
    100:503–516, 2000.
    [3] K. J. Shou and C.F. Wang. Analysis of the Chiufengershan landslide
    triggered by the 1999 Chi-Chi earthquake in Taiwan. Eng. Geo., 68:237–250,
    2003.
    [4] E. B. Pitman and L. Le. A two-fluid model for avalanche and debris flows.
    Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 363:1573–1601, 2005.
    [5] K. C. Chen and Y. C. Tai. Volume-weighted mixture theory of granular
    materials. Continuum Mech. Thermodyn., 19:457–474, 2008.
    [6] C. S. Campbell and C. E. Brennen. Chute flows of granular material:
    some computer simulations. J. Appl. Mech., 52:172–178, 1985.
    [7] L. E. Silbert, D. Ertas, G. S. Grest, T. C. Halsey, D. Levine, and S. J.
    Plimpton. Granular flow down an inclined plane: Bagnold scaling and
    rheology. Phys. Rev. E, 64:051302, 2001.
    [8] E. Azanza, F. Chevoir, and P. Moucheront. Experimental study of collisional
    granular flows down an inclined plane. J. Fluid Mech., 400:199–227,
    1999.
    [9] Y. Zhang and M. Reese. The influence of the drag force due to the
    interstitial gas on granular flows down a chute. Int. J. Multiph. Flow, 26:2049–
    2072, 2000.
    [10] M. A. Goodman and S. C. Cowin. A continuum theory for granular materials.
    Arch. Ration. Mech. Anal., 44:249–266, 1972.
    [11] C. Fang. Modeling dry granular mass flows as elasto-viscohypoplastic continua
    with microstructural effects. II. Numerical simulations of benchmark
    flow problems. Acta Mech., 197:191–209, 2008.
    [12] D. M. Hanes and O. R. Walton. Simulation and physical measurements
    of glass spheres flowing down a bumpy incline. Powder Technol., 109:133–144,
    2000.
    [13] O. Pouliquen. Scaling laws in ganular flows down rough inclined planes.
    Phys. Fluids, 11:542–548, 1999.
    [14] N. P. Kruyt and W. J. T. Verel. Experimental and theoretical study of
    rapid flows of cohesionless granular materials down inclined chutes. Powder
    Technol., 73:109–115, 1992.
    [15] H. Ahn, C. E. Brennen, and R. H.Sabersky. Measurements of velocity,
    velocity fluctuation, density and stresses in chute flows of granular materials.
    J. Appl. Mech., 58:792–803, 1991.
    [16] M. Nakagawa, S. A. Altobelli, A. Caprihan, E. Fukushima, and E. K.
    Jeong. Non-invasive measurements of granular flows by magnetic resonance
    imaging. Exp. Fluids, 16:54–60, 1993.
    [17] T. Kawaguchi, K. Tsutsumi, and Y. Tsuji. MRI measurement of granular
    motion in a rotating drum. Part. Part. Syst. Charact., 23:266–271, 2006.
    [18] M. D. Mantle, A. J. Sederman, L. F. Gladden, J. M. Huntley, T. W.
    Martin, R. D. Wildman, and M. D. Shattuck. MRI investigations of
    particle motion within a three-dimensional vibro-fluidized granular bed.
    Powder Technol., 179:164–169, 2008.
    [19] Y. L. Ding, R. Forster, J. P. K. Seville, and D. J. Paker. Segregation
    of granular flow in the transverse plane of a rolling mode rotating drum.
    Powder Technol., 28:635–663, 2002.
    [20] S. Y. Lim, J. F. Davidson, R. N. Forster, D. J. Paker, D. M. Scott, and
    J. P. K. Seville. Avalanching of granular material in a horizontal slowly
    rotating cylinder: PEPT studies. Powder Technol., 138:25–30, 2003.
    [21] W. Bi, R. Delannay, P. Richard, and A. Valance. Experimental study
    two-dimensional, monodisperse, frictional-collisional granular flows down
    an inclined chute. Phys. Fluids, 18:123302, 2006.
    85
    [22] S. P. Pudasaini, K. Hutter, S. S. Hsiau, S.C. Tai, Y. Wang, and
    R. Katzenbach. Rapid flow of dry granular materials down inclined chutes
    impinging on rigid wall. Phys. Fluids, 19:053302, 2007.
    [23] S. B. Savage and K. Hutter. The motion of a finite mass of granular
    material down a rough incline. J. Fluid Mech., 199:177–215, 1989.
    [24] J. M. N. T. Gray, M. Wieland, and K. Hutter. Gravity-driven free
    surface flow of granular avalanches over complex basal topography. Proc
    Royal Soc. A, 455:1841–1874, 1999.
    [25] E. B. Pitman and L. Le. A two-fluid model for avalanche and debris flows.
    Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci.., 363:1573–1601, 2005.
    [26] M. Pelanti, F. Bouchut, and A. Mangeney. A roe-type scheme for twophase
    shallow granular flows over variable topography. ESAIM-Math. Model.
    Numer. Anal.-Model. Math. Anal. Numer., 42:851–885, 2008.
    [27] D. Salciarini, C. Tamagnini, and P. Coversini. Discrete element modeling
    of debris-avalanche impact on earthfill barriers. Phys. Chem. Earth, 35:172–
    181, 2010.
    [28] H. Teufelsbauer, Y. Wang, M. C. Wang, and W. Wu. Flow-obstacle
    interaction in rapid granular avalanches: DEM simulation and comparsion
    with experiment. Granul. Matter, 11:209–220, 2009.
    [29] K. Hutter, M. Siegel, S. B. Savage, and Y. Nohguchi. Two-dimensional
    spreading of a granular avalanche down an inclined plane. Part I: Theory.
    Acta Mech., 100:37–68, 1993.
    [30] S. P. Pudasaini and K. Hutter. Rapid shear flows of dru granular massis
    down curved and twisted channels. J. Fluid Mech., 495:193–208, 2003.
    [31] A. K. Patra, A. C. Bauer, C. C. Nichita, E. B. Pitman, M. F. Sheridan,
    M. Bursik, B. Rupp, A. Webber, A. J. Stinton, L. M. Namikawa, and
    C. S. Renschler. Parallel adaptive numerical simulation of dry avalanches
    over natural terrain. J. Volcanol. Geotherm. Res., 139:1–21, 2005.
    [32] Y. C. Tai and C. Y. Kuo. A new model of granular flows over general
    topography with erosion and deposition. Acta Mech., 199:71–96, 2008.
    [33] R. M. Iverson. The physics of debris flows. Rev. Geophys., 35:245–296, 1997.
    [34] R. M. Iverson and R. P. Denlinger. Flow of variably fluidized granular
    masses across three-dimensional terrain. 1. Coulomb mixture theory. J.
    Geophys. Res., 106:537–552, 2001.
    [35] Y. Wang and K. Hutter. A constitutive theory of fluid-saturated granular
    materials and its application in gravitational flows. Rheol. Acta., 38(3):214–
    223, 1999.
    [36] K. Hutter and L. Schneider. Important aspects in the formulation of
    solid-fluid debris-flow models. Part I. Thermodynamic implications. Continuum
    Mech. Thermodyn., 22:363–390, 2010.
    [37] K. Hutter and L. Schneider. Important aspects in the formulation of
    solid-fluid debris-flow models. Part II. Constitutive modelling. Continuum
    Mech. Thermodyn., 22:391–411, 2010.
    [38] K. C. Chen and Y. C. Tai. Volume-Weighted mixture theory for granular
    materials. Contin. Mech. Thermodyn, 19:457–474, 2008.
    [39] S. P. Pudasaini, S. S. Hsiau, Y. Wang, and K. Hutter. Velocity measurements
    in dry granular avalanches using particle image velocimetry technique
    and comparison with theoretical prediction. Phys. Fluids, 17:093301,
    2005.
    [40] R. J. Adrian. Image Shifting Technique to Resolve Directional Ambiguity
    in Double-Pulsed Velocimetry. Appl. Opt., 25:3855–3858, 1986.
    [41] S. M. Nedderman, U. Tuzun, S. B. Savage, and G. T. Houlsby. The flow
    of granular materials—I: Discharge rates from hoppers. Chem. Eng. Sci.,
    37:1597–1609, 1982.
    [42] Y. C. Tai and Y. C. Lin. A focused view of the behavior of granular flows
    down a confined inclined chute into the horizontal run-out zone. Phys.
    Fluid, 20:123302, 2008.
    [43] H. Capart, D. L. Young, and Y. Zech. Voronoı imaging methods for the
    measurement of granular flows. Exp. Fluids, 32:121–135, 2002.
    [44] C. Truesdell. Rational Thermodynamics. Springer Verlag, New York, 1984.
    [45] R. M. Iverson. Differential equations governing slip-induced pore-pressure
    fluctuations in a water-saturated granular medium. Mathematical Geology,
    25:1027–1048, 1993.
    [46] B. J. Glasser, I.G. Kevrekidis, and S. Sundaresan. One- and twodimensional
    travelling wave solutions in gas-fluidized beds. J. Fluid Mech.,
    306:183–221, 1996.
    [47] J. F. Richardson and W.N. Zaki. Sedimentation and fluidization: part I.
    Trans. Inst. Chem. Eng., 32:35–53, 1954.
    [48] R. Jackson. The dynamics of fluidized particles. Cambridge University Press, 2000.
    [49] S. B. Savage and K. Hutter. The dynamics of granular material from
    initiation to runout. Part I: Analysis. Acta Mechanica, 86:201–223, 1991.
    [50] M. Princevas, H. J. S. Fernando, and C.D. Whiteman. Turbulent entrainment
    into natural gravity-driven flows. J. Fluid Mech., 533:259–268,
    2005.
    [51] M. Princevas, J. Buhler, and A. J. Schleiss. Mass-based depth and
    velocity scales for gravity currents and related flows. Environ. Fluid Mech.,
    9:369–387, 2009.
    [52] M. Princevas, J. Buhler, and A. J. Schleiss. Alternative depth-averaged
    models for gravity currents and free shear flows. Environ. Fluid Mech.,
    10:369–386, 2010.
    [53] P. G. Baines. Mixing in flows down gentle slopes into stratified environments.
    J. Fluid Mech., 443:237–270, 2001.
    [54] P. G. Baines. Mixing regimes for the flow of dense fluid down slopes into
    stratified environments. J. Fluid Mech., 538:245–267, 2005.
    [55] H. J. S. Fernando. Turbulent mixing in stratified fluid. Annu. Rev. Fluid
    Mech., 23:455–493, 1991.
    [56] J. Vallet, B. Turnbull, S. Joly, and F. Dufour. Observations on powder
    snow avalanches using videogrammetry. Cold Reg. Sci. Tech., 39:153–159, 2004.
    [57] R. Greve, T. Koch, and K. Hutter. Unconfined flow of granular
    avalanches along a partly curved chute. I. Theory. Proc. R. Soc. A-Math.
    Phys. Eng. Sci., 445:399–1413, 1994.
    [58] Y. C. Tai and Y. C. Lin. A focused view of the behavior of granular flows
    down a confined inclined chute into the horizontal run-out zone. Phys.
    Fluids, 20:123302, 2008.
    [59] L. E. Silbert, J.W. Landry, and G. S. Grest. Granular flow down a
    rough inclined plane: transition between thin and thick piles. Phys. Fluids,
    15:1–10, 2003.
    [60] K. F. Liu and C.C. Mei. Roll waves on a layer of a muddy fluid flowing
    down a gentle slope-A Bingham model. Phys. Fluids, 6:2577–2590, 1994.
    [61] B. Zelinski, E. Goles, and M. Markus. Maximization of granular outflow
    by oblique exits and by obstacles. Phys. Fluids, 21:031701, 2009.
    [62] S. Tewari, B. Tithi, A. Ferguson, and B. Chakraborty. Growing length
    scale in gravity-driven dense granular flow. Phys. Rev. E, 79:011303, 2009.
    [63] F. J. Pugh and K. C. Wilson. Velocity and concentration distributions in
    sheet flow above plane beds. J. Hydraulic Eng., 125:117–125, 1999.
    [64] G. Jiang and E. Tadmor. Non-oscillatory central schemes for multidimensional
    hyperbolic conservation laws. SIAM J. Sci. Comput., 19:1892–1917,
    1997.
    [65] Y. C. Tai, S. Noelle, J.M. N. T. Gray, and K. Hutter. Shock-capturing
    and front tracking methods for granular avalanches. J. Comput. Phys.,
    175:269–301, 2002.
    [66] S. P. Pudasaini and K. Hutter. Avalanche dynamics. Springer Verlag,
    Berlin/Heidelberg, 2007.
    [67] R. J. LeVeque. Finite volumes methods for hyperbolic problems. Cambridge Univ.
    Press, 2002.
    [68] R. J. LeVeque. Numerical methods for conservation laws. Birkhauser Verlag Press,
    2006.
    [69] N. Goutal and F. Maurel. Proceedings of the 2nd workshop on dambreak
    wave simulation. Technical Report HE-43/97/016/B, Direction des ´Etudes
    et Recherches, EDF, 1997.
    [70] M. Castro, J. M. Gallardo, and C. Par´es. High order finite volume
    schemes based on reconstruction of states for solving hyperbolic systems
    with nonconservative products. Applications to shallow-water systems.
    Math. Comput., 75(255):1103–1134, 2006.
    [71] J. G. Zhou, D. M. Mingham, and D. M. Ingram. The surface gradient
    method for the treatment of source terms in the shallow-water equation.
    J. Comput. Phys., 168:1–25, 2001.
    [72] G. Gottardi and M. Venutelli. Central scheme for two-dimensional dambreak
    flow simulation. Adv. Water Resour., 27:259–268, 2004.
    [73] C. Biscarini, S. D. Francesco, and P. manciola. CFD modelling approach
    for dam break flow studies. Hydrol. Earth Syst. Sci., 14:705–718, 2010.
    [74] G. F. Lin, J. S. Lai, and W. D. Guo. Performance of high-resolution TVD
    schemes for 1D dam-break simulations. J. Chin. Inst. Eng., 28(5):771–782,
    2005.
    [75] M. Quecedo, M. Pastor, M. I. Herreros, J. A. F. Merodo., and
    Q. Zhang. Comparsion of two mathematical models for solving the dam
    break problem using the FEM method. Comput. Methods Appl. Mech. Engrg.,
    194:3984–4005, 2005.
    [76] K. Hutter, Y. Wang, and S. Pudasaini. The Savage-Hutter avalanche
    model: how far can it be Pushed? Phil. Trans. R. Soc. A, 363:1507–1528,
    2005.

    QR CODE
    :::