跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖俊杰
Chun-Chieh Liao
論文名稱: 具有星狀有機無機固 (膠) 態高分子電解質之結構鑑定及電化學特性研究
A Star-Branched Organic-Inorganic Hybrid Electrolyte with Remarkable Swelling Properties Based on PPG-PEG-PPG Diamine
指導教授: 高憲明
Hsien-Ming Kao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 97
語文別: 中文
論文頁數: 150
中文關鍵詞: 膨潤比鋰電池高分子電解質
外文關鍵詞: solid polymer electrolyte, Li, swelling ratio, gel polymer electrolyte
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文第一部分主要是利用 Jeffamine-ED serial 與三聚氯氰反應形成具有星狀結構之高分子,進一步藉由添加3-Glycidyloxypropyl trimethoxysilane (GLYMO) 使其固化,並進一步將其固態高分子電解質吸附電解液製備成膠態高分子電解質。藉由固態核磁共振 (Solid State NMR)、交流阻抗分析儀 (AC-Impedance)、及 線性掃描伏安法 (LSV)、循環伏安法 (CV)、進行分析探討,發現膠態高分子電解質具有高膨潤比、高導電度,以及電化學穩定,最後組裝成硬幣型 2032 電池並與市售使用聚丙烯 (PP) 隔離膜之電池進行充放電循環壽命比較,發現在充放電範圍 2.75 ~ 4.4 V,充放電速率 0.2 C,膠態高分子電解質之電池具有比市售 PP 隔離膜電池高出一倍之循環壽命。
    另外,第二部分則是在高分子電解質中添加 PVdF-HFP 以增加其高分子電解質機械強度,並藉由微差掃描卡計 (DSC) 、紅外吸收光譜儀 (FTIR) 、交流阻抗分析儀、拉力機以及固態核磁共振光譜等儀器對具有星狀結構之固態高分子電解質加以分析研究。亦吸附電解液進行膠態高分子電解質導電度測試。發現適當添加 PVdF-HFP 可增加高分子電解質之導電度,且可提升高分子電解質之機械強度。


    We have synthesized a new star-branched organic-inorganic hybrid electrolyte based on the use of cyanuric chloride as the central core to couple with triblock copolymers PPG-PEG-PPG diamine (ED2000), followed by cross-linking with epoxy alkoxysilanes via a sol-gel process. The star-branched hybrid material has soaked in an electrolyte solution of 1 M LiClO4 in EC/PC (1:1, w/w). The present star-branched hybrid material exhibits a large electrolyte uptake capacity that increases the ionic conductivity value up to 1.11 × 10-2 Scm-1 at 30 °C. The film has also possessed electrochemical stability up to 6.0 V versus Li/Li+. The star-branched hybrid electrolyte has a remarkable two-fold increase in cyclabilty during overcharge at 4.4 V as compared to polypropylene (PP) separator sample. PVdF-HFP is also added in hybrid electrolyte, not only to enhance the mechanical strength but also keep the conductivity at the same level.

    第一章 序論……………………………………………………………..1 1-1. 簡介………………………………………………………………1 1-2. 文獻回顧…………………………………………………………3 1-2-1. 鋰電池的發展與鋰二次電池簡介………………..………....3 1-2-2. 高分子電解質……………..………………………..………..8 1-2-3. 固態高分子電解質 (Solid Polymer Electrolytes)…..……....9 1-2-4. 膠態 (gelled-type) 高分子電解質………………..………..14 1-2-5. 微孔型高分子電解質…………………………..…………..21 1-2-6含有三氮環之高分子……………………………..…….……24 1-2-7有機矽高分子……………………………………..………… 25 第二章 研究方向………………………………………………………26 2-1. 研究目的………………………………………………………..26 2-2. 研究架構………………………………….…………………….27 第二章 實驗部分與原理………………………………………………29 2-1. 實驗藥品………………………………………………………..29 2-2. 儀器設備………………………………………………………..31 2-3. 高分子電解質膜之製備………………………………………..32 2-3-1第一部分 : 3ED-3G-CC 高分子電解質製備..……………..32 2-3-1-1 3ED-3G-CC 固態高分子電解質製備….………………..32 2-3-1-2 3ED-3G-CC 膠態高分子電解質製備……….…………..33 2-3-1-3 陰極極片製作……………………..……………………..33 2-3-1-4 硬幣型 2032 電池組裝……….….……………………..33 2-3-2 第二部分: 添加 PVdF-HFP 固態高分子電解質之製備….35 2-3-2-1 3ED-3G-CC-X-Y 固態高分子電解質製備…….………..35 2-4. 儀器分析原理…………………………………………………..37 2-4-1. 熱重量分析儀 (Thermo Gravimetric Analyzer)……..….....37 2-4-2. 微差掃瞄熱卡計 (Differential Scanning Calorimeter)….....37 2-4-3. 傅立葉紅外線吸收光譜儀………………………..………..39 2-4-4. 交流阻抗分析儀……………………………………..……..40 2-4-5. 固態核磁共振光譜儀……………………………..………..44 2-4-5-1. 原理簡介………………………………………………...44 2-4-5-2. 常用固態核磁共振技術………………………………...50 2-4-6. 線性掃描電位儀測試………………………..……………..61 2-4-7. 循環伏安法測試……………………………..……………..61 2-4-8. 電池循環壽命測試……………………..…………………..61 2-4-9. 應力 (Tensile Stree) 與應變 (Tensile Strength) 測定…....62 第三章 結果與討論…………………………………………………..63 3-1. ?. 3ED-3G-CC 膠態高分子電解質…………………..63 3-1-1. 膠態星狀高分子電解質……………………….….....…...63 3-1-2. 膠態高分子電解質之膨潤比….…………….....…...64 3-1-3. 膠態高分子電解質之導電度量測….…………….....…...68 3-1-4. 7Li 擴散常數之量測……….…………….………….....…...72 3-1-5. 線性掃描電位分析…………….………………….....…...74 3-1-6. 循環伏安法分析………….……………………….....…...76 3-1-7. 電池性能測試………………….………………….....…...78 3-2. ??. 添加 PVdF-HFP 之 3ED-3G-CC 固 (膠) 態高分子電解質…………………………………………………………....85 3-2-1. 添加 PVdF-HFP 之星狀高分子電解質………..…......…...85 3-2-2. 熱重量分析……………………………….……….....…...86 3-2-1. 微差掃瞄熱卡計分析…………….………..……….....…...88 3-2-4. 紅外線吸收光譜之鑑定……………….…..……….....…...97 3-2-5. 固態高分子電解質之導電度量測…….……………...….110 3-2-6. 固態核磁共振光譜分析……………….……………...….120 3-2-6-1. 13C MASNMR………………...…..…………...….........121 3-2-6-2. 13C CP/MASNMR……………...………..……….….....124 3-2-6-3. 29Si MASNMR ….......………………...….……….....…130 3-2-6-4. 1H/13C 2D WISE NMR …............……………...….....…132 3-2-7. 應力 (Tensile Stress) 與應變 (Tensile Strength) 測定….134 3-2-8. 膠態高分子電解質之膨潤比……………...…...….136 3-2-9. 膠態高分子電解質之導電度量測………….…….…...….138 第四章 結 論…….…………………………………………………..141 參考文獻………………………………………………...……………143

    Linden, D. Handbook of Batteries, 2nd ed., McGraw-Hill, New York, USA, 1994
    2. Yoda S.; Ishihara, K. J. Power Sources, 1999, 81-82, 162.
    3. Besenhard, J. O. Handbook of Battery Materials, Wiley-VCH, Weinheim, Germany, 1999.
    4. Wakihara, M.; Yamamoto, O. Lithium Ion Batteries: Fundamentals and Performance, Wiley-VCH, Weinheim, Germany, 1998.
    5. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Adv. Mater., 1998, 10, 725.
    6. Scrosati, B. J. Electrochem. Soc., 1992, 139, 2776.
    7. Megahed, S.; Scrosati, B. Interface, 1995, 4, 34.
    8. Owen, J. R. Chem. Soc. Rev., 1997, 26, 259.
    9. Peled, E. J. Electrochem. Soc.,1979, 126, 2047.
    10. Peled, E.; Golodnitsky, D.; Ardel, G.; Eshkenazy, V. Electrochim. Acta, 1995, 40, 2197.
    11. Brummer, S. B.; Koch, V. R. “The recharging of the lithium electrode in organic electrolytes”, in Materials for Advanced Batteries, D. W. Murphy, J. Broadhead, and B. C. H. Steele, Editors, Wiley-VCH, Weinheim, Germany, 1999, p.553,.
    12. Peled, E.; Golodnitsky, D.; Penciner, J. “The anode/electrolyte interface”, in Handbook of Battery Materials, J. O. Besenhard, Editor, p.419-456, Weley-VCH, Weinheim, Germany, 1999.
    13. Berthier, C.; Gorecki, W.; Minier, M.; Armand, M. B.; Chabagno, J. M.; Rigaud, P. Solid State Ionics,1983, 11, 91.
    14. Shriver, D. F.; Ratner, M. A. Chem. Rev., 1988, 4, 245.
    15. Fenton, D. E.; Parker, J. M.; Wright, P. V. Polymer,1973, 14, 589.
    16. Armand, M. B.; Chabagno, J. M.; Duclot, M. Second International Meeting on Solid Electrolytes, Extended Abstract, St. Andrews, Scotland, September 1978, 20.
    17. Armand, M. B.; Chabagno, J. M.; Duclot, M. “Poly-ether as solid electrolytes”, in Fast Ion Transport in Solids, Elsevier, North-Holland, Amsterdam, Netherlands, 1979, p.131.
    18. Scrosati, B. Applications of Electroactive Polymers, Chapman ? Hall, London, UK, 1993.
    19. Gray, F. M. Solid Polymer Electrolytes: Fundamentals and Technological Appications, VCH, New York, USA, 1991.
    20. MacCallum, J. R.; Vincent, C. A. Polymer Electrolyte Reviews-1, Elsevier Applied Science, London, UK, 1989.
    21. MacCallum, J. R.; Vincent, C. A. Polymer Electrolyte Reviews-2, Elsevier Applied Science, London, UK, 1989.
    22. Gray, F.; Armand, M. “Polymer electrolytes”, in Handbook of Battery Materials, J. O. Besenhard, Editor, Wiley-VCH, Weinheim, Germany,1999, p.499.
    23. Song, J. Y.; Wang, Y. Y.; Wan, C. C. J. Power Sources, 1999, 77, 183.
    24. Murata, K.; Izuchi, S.; Yoshihisa, Y. Electrochim Acta, 2000, 45, 1501.
    25. Koksbang, R.; Olsen, I. I.; Shackle, D. Solid State Ionics, 1994, 69, 320.
    26. Bruce, P. G.; Gray, F. M. “Polymer electrolytes II: physical principles”, in Solid State Electrochemistry, Cambridge University Press, Cambridge, UK, 1995, p.119.
    27. Panel Discussion, J. Power Sources, 1997, 68, 173.
    28. Cheradame, H.; LeNest, J. F.; Gandini, A.; Leveque, M. J. Power Sources, 1985, 14, 27.
    29. Armand, M.; Gorecki, W.; Andreani, R. In Proceedings in the Second International Meeting on Polymer Electrolytes (Ed. B. Scrosati), Elsevier, New York, 1990, p.91.
    30. Kobayashi, N.; Uchiyanma, M.; Tsuchida, E. Solid State Ionics, 1985, 17, 307.
    31. Bannister, D. J.; Davies, G. R.; Ward, I. M.; McIntyre, J. E. Polymer, 1984, 25, 1291.
    32. Ross-Murphy, S. B. “Formation, structure and properties of physical networks”, in Polymer Networks.?Principles of Their Formation, Structure and Properties, R. F. T. Stepto, Editor, Blackie Academic ? Professional. London, UK, 1998, p288.
    33. Sperling, L. H. Introduction to Physical Polymer Science, 2nd ed., John Wiley ? Sons, New York, USA, 1993, p.382.
    34. Xu, K. Chem. Rev., 2004, 104, 4303.
    35. Bannister, O.; Rousselet, C.; Gillet, P. A.; Truche, C. J. Electrochem. Soc. 1992, 139, 1862.
    36. Croce, F.; Brown, S. D.; Greenbaum, S. G.; Slane, S. M.; Salomon, M. Chem. Mater. 1993, 5, 1268.
    37. Stallworth, P. E.; Li, J.; Greenbaum, S. G. Croce, F.; Slane, S. Solid State Ionics, 1994, 73, 119.
    38. Stallworth, P. E.; Li, J.; Greendaum, S. G.; Croce, F.; Slane, S.; Salomon, M. Electrochim. Acta, 1995, 40, 2137.
    39. 楊長榮、唐宏怡、張國恩, “高分子鋰二次電池電解質材料介紹”工業材料. 1998, 133期,93頁.
    40. Dias, F. B.; Lambertus, P.; Jakobert, B.; Veldhuis, J. J. Power Source, 2000, 88, 169.
    41. Ito, Y.; Kanehori, K.; Miyanuchi, K.; Kudo, T. J. Mater. Sci., 1987, 22, 1845.
    42. Watanabe, M.; Kanba, M.; Matsuda, H.; Mizoguchi, K.; Shinohara, I.; Tsuchida, E. Chem.-Rapid. Commun., 1981, 2, 741.
    43. Gozdz, A. S.; Schmutz, C. N.; arascon, J. M. T. U.S. Patent, 1995, 5, 418, 091.
    44. Weston, J.; Steel, B. C. H. Solid State Ionics, 1982, 7, 75.
    45. Gozdz, A. S.; Schmutz, C. N.; Tarascon, J. M. U.S. Patent, 1994, 5, 296,318.
    46. Gozdz, A. S.; Schmutz, C. N.; Tarascon, J. M.; Warren, P. C. U.S. Patent, 1995, 5, 418,091.
    47. Gozdz, A. S.; Schmutz, C. N.; Warren, P. C. U.S. Patent, 1995, 5, 460,904.
    48. Michot, T.; Nishimoto, A.; Watanabe, M. Electrochim. Acta, 2000, 45, 1347.
    49. Boudin, F.; Andrieu, X.; Jehoulet, C. J. Power Sources, 1999, 81, 804.
    50. Murata, K.; Ixuchi, S.; Yoshihisa, Y. Electrochimica Acta, 2000, 45, 1501.
    51. Itoh, T.; Ikeda, M.; Hirata, N.; Moriya, Y.; Kubo, M.; Yamamoto, O. J. Power Sources. 1999, 81-82, 824.
    52. Desai, P.; Hubblell, J. A. Journal of Biomedical Materials Research. 1991, 25, 829.
    53. H. B.; M. W. Journal of Chromatography A. 1996, 728, 447.
    54. Lin, C. E.; Li, F. K.; Lin, C. H. Journal of Chromatography A. 1996, 722, 211.
    55. Fahmy, A. S.; Bagos, V. B.; Mohammed, T. M. Bioresource Technology. 1998, 64, 121.
    56. Yang, Z.; Domach, M.; Auger, R.; Yang, F. X.; Russell, A. J. Enzyme and Microbial Technology. 1996, 18, 82.
    57. Gombotz, W. R.; Guanghui, W.; Hoffman, A. S. J. Appli. Polym. Sci. 1989, 37, 91.
    58. McCreath, G. E.; Owen, R. O.; Nash, D. C.; Chase, H. A. Journal of Chromatography A. 1997, 773, 73.
    59. Wachsmann, M.; Bruckner, H. Chromatographia. 1998, 47, 11.
    60. Jan, J. Z.; Huang, B. H.; Lin, J. J. Polymer. 2003, 44, 1003.
    61. Dean, M. T.; Mary Ann, B. M.; James, D. K.; William, R. B. Macromolecules. 2006, 39, 120.
    62. Kaskhedikar, N.; Burjanadze, M.; Karatas, Y.; Wiemhöfer, H.D. Solid State Ionics. 2006, 177, 3129.
    63. Rabek, J. F. “Experimental Methods in Polymer Chemistry”, New York, 1980.
    64. Besenhard, J. O. In Handbook of Battery Materials; Wiley-VCH: Weinheim, Germany. 1999.
    65. Andrew, E. R.; Bradbury, A.; eades, R. G. Nature. 1058, 182, 1659.
    66. Lowe, I. J. Phys. Rev. Lett. 1959, 2, 285.
    67. Schmidt-Rohr, K.; Clauss, J.; Spiess, H. W. Macromolecules, 1992, 25, 3273.
    68. Subramania, A.; Sundaram, N. T. K.; Priya, A. R.; Gangadharan, R.; Vasudevan, T.; J. Appl. Polym. Sci., 2005, 98, 1891.
    69. 黃景忠, 碩士論文, “紫外光硬化型PU / 二氧化矽奈米複合材料於表面塗裝之應用”淡江大學, 中華民國台灣, 2006.
    70. Tigelaar, D. M.; Meador, M. A. B.; Bennett, W. R. Macromolecules, 2006, 39, 120.
    71. Tigelaar, D. M.; Meador, M. A. B.; Bennett, W. R. Macromolecules, 2007, 40, 4159.
    72. Ue, M. J. Electrochem. Soc., 1994, 141, 3336.
    73. Singh, B.; Kumar, R.; Sekhon, S.S. Solid State Ionics, 2005, 176, 1577.
    74. Tokuda, H.; Tsuzuki, S.; Susan, M. A. H.; Hayamizu, K.; Watanabe, M. J. Phys. Chem. B. 2006, 110, 19593.
    75. Acosta, J.L.; Morales, E. Solid State Ionics. 1996, 85, 85.
    76. Liang, W.J.; Kuo, C. L.; Lin, C. L.; P. L. J. Polym. Sci. Pol. Chem. 2002, 40, 1226.
    77. Zhou, D. Y.; Wang, G. Z.; W. S.; Li, G. L.; Tan, C. L.; Rao, M. M.; Liao, Y. H. J. Power Sources. 2008, 184, 477.
    78. Subramania, A.; Sundaram, N. T. K.; Kumar, G. V.; Vasudevan, T. Ionics, 2006, 12, 175.
    79. Digar, M.; Hung, S.L.; Wang, H.L.; Wen, T.C.; Gopalan, A. Polymer, 2002, 43, 681.
    80. Jannasch, P. Electrochim. Acta. 2001, 46, 1641.
    81. Alloin F.; Sanchez, J. Y. Electrochim. Acta. 1998, 43, 1199.
    82. Ba, H.; Peng, X.; Qi, Y.; Chen, D.; Wang, F. Makromol. Chem. 1990, 191, 2529.
    83. Kim, D. W.; Park, J. K.; Rhee, H. W. Solid State Ionics. 1996, 83, 49.
    84. Acosta, J. L.; Morales, E. Solid State Ionics. 1996, 85, 85.
    85. Liang, W. J.; Kuo, C. L.; Lin, C. L.; Kuo, P. L. J. Polym. Sci. Pol. Chem. 2002, 40, 1226.
    86. Murate, K.; Izuchi, S.; Yoshihisa, Y. Electrochim. Acta. 2000, 45, 1501.
    87. Jannasch, P. Polymer. 2001, 42, 8629.
    88. Münchow, V.; Noto, V. D.; Tondello, E. Electrochim. Acta. 2000, 45, 1211.
    89. Wu, S.; Peng, X.; Song, Y.; Zhou, Z.; Lin, Y.; Chen, D.; Wang, F. Solid State Ionics. 1995, 76, 163.
    90. Liang, W. J.; Kuo, P. L. Polymer, 2004, 45, 1617.
    91. Schmidt, R. K.; Clause, J.; Spiess, H. W. Macromolecules, 1992, 25, 3273.
    92. 潘育麒, 碩士論文, “固態有機無機星狀高分子電解質之結構與動力學研究”中央大學, 中華民國台灣, 2008.
    93. 吳豐賢, 碩士論文, “具有星狀有機無機高分子電解質之結構鑑定與動力學研究”中央大學, 中華民國台灣, 2007.
    94. 陳晃光, 碩士論文, “鋰離子電池陰極材料熱穩定性探討”中央大學, 中華民國台灣, 2008.
    95. 宋金穎, 博士論文, “微孔性聚偏氟乙烯高分子電解質之電化學特性研究” 清華大學, 中華民國台灣, 2000.
    96. Liao, C.-C.; Wu, H.-Y.; Saikia, D.; Pan, Y.-C.; Chen, Y.-K.; Fey, G. T. K.; Kao, H.-M. Macromolecules, 2008, 41, 8956.

    QR CODE
    :::