| 研究生: |
吳東霖 Tung-lin Wu |
|---|---|
| 論文名稱: |
基於對數概似比演算法且可配置天線組 態之快速軟性輸出多輸入多輸出偵測器 A High Speed Antenna-Configurable Soft-output MIMO Detector Based on Log-likelihood Ratio Algorithm |
| 指導教授: |
薛木添
Muh-Tian Shiue |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 偵測器 、軟性輸出 、多輸入多輸出 |
| 外文關鍵詞: | Detector, Soft-output, MIMO |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了一個具有概似比演算法的可平行快速解碼且天線組態可變的軟性輸出多輸入輸出偵測器,可支援QPSK 、16QAM 、64QAM 三種調變星座圖,天線方面可支援2x2~8x8 七種組態。由文獻可知道軟性輸出多輸出輸入偵測器可簡化成候選列表產生器與軟性值產生器兩個區塊,候選列表產生器能提供多組高可信度的訊號路徑,軟性值產生器藉由參考這些訊號路徑後,再去產生每一個位元的軟性值輸出。本論文所使用的候選列表產生器是基於傳統K 最佳演算法,並經過多層的延伸與排序,可以產生出K 組高可信度的訊號路徑並提供給後端的軟性值產生器,而軟性值產生器主要是實現概似比演算法,利用前端所提供的訊號路徑去產生每一個位元的軟性值,再利用這些軟性值去還原傳送端的實際訊號。本論文所使用的硬體架構為平行處理,除了可以提供高資料吞吐量外,且在天線組態改變的情況下,硬體使用率也可以達到百分之百,得到在不同的天線組態下也可以提供相同的資料吞吐量效果。
A high speed antenna-configurable soft-output MIMO detector based on log-likelihood ratio algorithm is proposed in this thesis. It can support three various modulation methods such as QPSK, 16QAM, 64QAM, and seven antenna modes such as 22 88. The soft-output MIMO detector can be simplified to two blocks which are candidate list generator and soft value generator. The candidate list generator can provide multiple signal paths with high confidence, and the soft value generator offer the soft value output of each bit by referencing these signal paths. The candidate list generator which is used in this thesis is based on traditional K-best algorithm and generates the K sets of high confidence signal paths for the back-end soft value generator by several extending and sorting. In order to recover the received signal into the correct signal, the soft value generator realizes the log-likelihood algorithm and generates the soft value output of each bit by using the high confidence signal paths which are provided by front-end candidate list generator. The proposed hardware implementation in this thesis
is the parallel architecture. The proposed hardware Implementation in this thesis not only can provide highly-same throughput but also can achieve 100% hardware utilization in different antenna modes.
[1] Kwan-waiWong, Chi-ying Tsui, Roger Shu-kwan Cheng andWai-ho
Mow, “A VLSI Architecture of a K-best Lattice Decoding Algorithm for MIMO Channels.” in Proc. ISCAS, pp. 273-276, May 2002.
[2] Yong Soo Cho, Jaekwon Kim, Won Young Yang, Chung G. Kang,
“MIMO-OFDM Wireless Communication with MATLAB.” 2010.
[3] Bertrand M. Hochwald and Stephan ten Brink, “Achieving Near-Capacity on a Multiple-Antenna Channel.” IEEE Trans. Commun., vol. 51, no. 3, pp. 389-399, Mar. 2003.
[4] Zhan Guo and Nilsson P., “Algorithm and Implementation of the k-Best Sphere Decoding for MIMO Detection.” IEEE Journal on Selected Areas in Communications, vol. 24, no. 3, Mar. 2007.
[5] Eldad Perahia, Robert Stacey, “Next Generation Wireless LANs : Throughtput, Robustness, and Reliability in 802.11n.” Cambridge University Press, Sep. 2008.
[6] Emre Telatar, “Capacity of Multi-antenna Gaussian Channels.”European Transactions Telecommunication, pp. 585-595, Nov.-Dec. 1990.
[7] Babak Hassibi, Haris Vikalo, “On the Sphere Decoding Algorithm. I. Expected Complexity.” IEEE Trans. on Signal Processing, vol. 53, pp. 2806-2818, Aug. 2005.
[8] Saif K. Mohammed, K. Vishnu Vardhan, A. Chockalingam, B. Sundar Rajan, “Large MIMO Systems: A Low-Complexity Detecotr at High Spectral Efficiencies.” IEEE Int. Conf. on Common., pp. 1104-1109, May. 2008.
[9] Andreas Burg, Moritz Borgmann, Markus Wenk, Martin Zellweger, Wolfgang Fichtner, Helmut Bölcskei, “VLSI Implementation of MIMO Detection Using the Sphere Decoding Algorithm.” IEEE Journal. Solid-State Circuit, vol. 40, no. 7, pp. 1566-1577, July. 2005.
[10] Markus Wenk, Martin Zellweger, Andreas Burg, Norbert Felber, Wolfgang Fichtner, “K-Best MIMO Detection VLSI Architectures Achieving up to 424 Mbps.” in Proc. IEEE Int. Symp. Circuits Syst., pp. 1151–1154, May. 2006.
[11] Yong Soo Cho, Jaekwon Kim, Won Young Yang, Chung G. Kang,
“MIMO-OFDM Wireless Communications with MATLAB.” 2010.
[12] Mahdi Shabany, P. Glenn Gulak, “Scalable VLSI Architecture for K-Best Lattice Decoders.” in Proc. IEEE Int. Symp. Circuits Syst., pp. 940-943, May. 2008.
[13] S.-K. Lin, M.-T. Shiue, “Design of Configurable K-Best MIMO Detector for 2x2, 4x4 and 8x8 Data Streams.” National Central Uni-versity thesis, 2010.
[14] Ming-hao Lee, M.-T. Shiue, “Design of Scalable Soft-output MIMO Detector based on K-Best Algorithm.” National Central University thesis, 2012.
[15] C. Studer, A. Burg, and H. Bölcskei, “Soft-output sphere decoding: Algorithms and VLSI implementation.” IEEE J. Sel. Areas Commun.,vol. 26, no. 2, pp. 290–300, Feb. 2008.
[16] Sizhong Chen, Tong Zhang, Yan Xin, “Relaxed K-Best MIMO Signal Detector Design and VLSI Implementation.” IEEE Trans.
VLSI Syst., vol. 15, no. 3, pp. 328–337, Mar. 2007.
[17] Chun-Hao Liao, To-Ping Wang, and Tzi-Dar Chiueh, “A 74.8 mW soft-output detector IC for 8 × 8 spatial-multiplexing MIMO communications.” IEEE J. Solid State Circuits, vol. 45, no. 2, pp. 411–421, Feb. 2010.
[18] D. Garrett, L. Davis, S.ten Brink, and B. Hochwald, “APP Processing for High Performance MIMO Systems.” in Proc. IEEE Custom Integrated Circuits Conf., San Jose, CA, pp. 271-274, Sept. 2003.
[19] Fred Ma and John Knight, “Convolution Codes.” Jan. 1999.
[20] M. Siti and M. Fitz, “A Novel Soft-output Layered Orthogonal Lattice Detector for Multiple Antenna Communications.” in IEEE International Conference on Communications, vol. 4, 2006.
[21] P. Bhagawat, R. Dash, and G. Choi, “Dynamically Reconfigurable Soft Output MIMO Detector.” in ICCD, pp. 68-73, 2008.
[22] Hockwald and S, t, Brink, “Achieving Near-Capacity on a Multiple-Antenna Channel.” IEEE Trans. Communications, vol. 51, no. 3, pp. 389-399, Mar. 2003.
[23] T.-P. Wang and T.-D. Chiueh, “Design of a New Complex Sphere Decoder for Soft-Output MIMO Detector.” National Taiwan University Thesis, 2007.