| 研究生: |
侯智舜 Zhi-Shun Hou |
|---|---|
| 論文名稱: |
具能量放大之數位光學共軛之研究 The study of digital optical phase conjugation which enlarges the power of reconstructed object light |
| 指導教授: |
孫慶成
Ching-Cherng Sun 楊宗勳 Tsung-Hsun Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 數位光學相位共軛 、小貓自泵相位共軛鏡 、相位共軛 、能量放大 |
| 外文關鍵詞: | Digital optical phase conjugation, Kitty self-pumped phase conjugate mirror, Phase conjugation, Enlarging the power of object light |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文改良以小貓自泵相位共軛鏡應用於數位光學相位共軛器並利用其來放大原始物光之能量並同步紀錄與還原物光,並嘗試進行即時記錄還原物光,利用還原物光進行掃描,多工還原物光與計算出額外的還原相位;藉由本架構共軛物光能量放大與記錄還原同步之特性,對於生醫領域之光學相關應用上將會有正面效應。
In this thesis, we improve the digital optical phase conjugation ( DOPC ) based on Kitty self-pumped phase conjugate mirror ( Kitty-SPPCM ) to enlarge the power of the object light and synchronize the reconstruction light with the record of object light. Then we try to design an in-time DOPC, use the reconstructed object light to scan, reconstruct different time’s object light, and compute the other reconstruction phase distribution. The enlarged power of the object light and the reconstruction which synchronizes with the record by our DOPC, will improve the optics-related applications of biomedical field.
參考文獻
[1] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72 (1966).
[2] F. S. Chen, J. T. LaMacchia, and D. B. Fraser, "Holographic storage in lithium niobate," Appl. Phys. Lett. 13, 223 (1968).
[3] F. S. Chen, "Optical induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389 (1969).
[4] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. Steady state," Ferroelectrics 22, 949 (1979).
[5] J. Feinberg, "Asymmetric self-defocusing of an optical beam from the photorefractive effect," J. Opt. Soc. Am. 72, 46-51 (1982).
[6] P. Yeh, "Two-wave mixing in nonlinear media," IEEE J. Quant. Electron. 25, 484-519 (1989).
[7] A. Yariv and D. M. Pepper, "Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing," Opt. Lett. 1, 16-18 (1977).
[8] M. Cronin-Golomb, J. O. White, B. Fischer, and A. Yariv, "Exact solution of a nonlinear model of four-wave mixing and phase conjugation," Opt. Lett. 7, 313-315 (1982).
[9] R. A. Fisher, Optical Phase Conjugation (Academic Press, New York, 1983).
[10] C.-C. Sun, R.-H. Tsou, W. Shen, H.-H. Chang, J.-Y. Chang, and M.-W. Chang, "Shearing interferometer with a Kitty self-pumped phase-conjugate mirror," Appl. Optics 35, 1815-1819 (1996).
[11] W.-C. Su, C.-C. Sun, Y.-C. Chen, and Y. Ouyang, "Duplication of phase key for random-phase-encrypted volume holograms," Appl. Optics 43, 1728-1733 (2004).
[12] C.-C. Sun and W.-C. Su, "Three-dimensional shifting selectivity of random phase encoding in volume holograms," Appl. Optics 40, 1253-1260 (2001).
[13] C.-C. Sun, S. Yeh, M.-W. Chang, and K. Y. Hsu, "Optimal incident conditions for a Cat-type self-pumped phase-conjugate mirror," Appl. Optics 31, 5769-5772 (1992).
[14] B. Wang, C.-C. Sun, W.-C. Su, and A. E. Chiou, "Shift-tolerance property of an optical double-random phase-encoding encryption system," Appl. Optics 39, 4788-4793 (2000).
[15] W.-C. Su, Y.-W. Chen, Y. Ouyang, C.-C. Sun, and B. Wang, "Optical identification using a random phase mask," Opt. Commun. 219, 117-123 (2003).
[16] C.-C. Sun, W.-C. Su, B. Wang, and A. E. Chiou, "Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm," Opt. Commun. 191, 209-224 (2001).
[17] H. F. Yau, H. C. Kung, H. Y. Lee, C. C. Sun, T. C. Chen, C. C. Chang, Y. P. Tong, and J. Chen, "Ordinary polarized phase conjugator using the photovoltaic effect," Opt. Commun. 184, 257-263 (2000).
[18] Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, "Optical phase conjugation for turbidity suppression in biological samples," Nat. Photonics 2, 110-115 (2008).
[19] M. Cui and C. Yang, "Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation," Opt. Express 18, 3444-3455 (2010).
[20] M. Cui and C. Yang, "Turbidity suppression by optical phase conjugation using a spatial light modulator," California Institute of Technology, US Patent US20110122416 A1 (2011).
[21] C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, "Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle," Opt. Express 18, 20723-20731 (2010).
[22] C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, "Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media," Opt. Express 18, 12283-12290 (2010).
[23] X. Yang, C.-L. Hsieh, Y. Pu, and D. Psaltis, "Three-dimensional scanning microscopy through thin turbid media," Opt. Express 20, 2500-2506 (2012).
[24] I. M. Vellekoop, M. Cui, and C. Yang, "Digital optical phase conjugation of fluorescence in turbid tissue," Appl. Phys. Lett. 101, 081108 (2012).
[25] Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, "Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light," Nat. Commun. 3, 928 (2012).
[26] B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, "Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)," Nat. Photonics 7, 300-305 (2013).
[27] K. Si, R. Fiolka, and M. Cui, "Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation," Nat. Photonics 6, 657-661 (2012).
[28] Y. M. Wang and C. Yang, "Acoustic-assisted iterative wave form optimization for deep tissue focusing," California Institute of Technology, US Patent US20120070817 A1 (2012).
[29] M. Jang, A. Sentenac, and C. Yang, "Optical phase conjugation (OPC)-assisted isotropic focusing," Opt. Express 21, 8781-8792 (2013).
[30] M. Cui and C. Yang, "Optical phase conjugation 4 pi microscope," California Institute of Technology, US Patent US20110109962 A1 (2011).
[31] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, "Focusing and scanning light through a multimode optical fiber using digital phase conjugation," Opt. Express 20, 10583-10590 (2012).
[32] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, "High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber," Biomed. Opt. Express 4, 260-270 (2013).
[33] M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, "Method for auto-alignment of digital optical phase conjugation systems based on digital propagation, " Opt. Express 22, 14054-14071 (2014).
[34] M. Jang, H. Ruan, I. M. Vellekoop, B. Judkewitz, E. Chung, and C. Yang, " Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin, " Bio. Opt. Express 6, 72-85 (2014).
[35] K. Kawakami, S. Uchida, and H. Okamura, "Evaluation of tracking ability of a phase conjugate mirror using a CCD array and spatial light modulator for optical energy transmission," Appl. Opt. 51, 1572–1580 (2012).
[36] K. Kawakami, S. Uchida, and H. Okamura, " Real-time compensation of phase distortions by digital phase conjugation using CCD and liquid crystal panel," Appl. Opt. 53, 3663-3667 (2014).
[37] Lukas Novotny, Randy X. Bian, and X. Sunney Xie, " Theory of nanometric optical tweezers," Phy. Review Lett. 79, 645-648 (1997).
[38] J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers." Optics Commun. 207, 169-175 (2002).
[39] Dougherty, Thomas J., et al. "Photodynamic therapy." Journal of the National Cancer Institute 90,889-905 (1998).
[40] D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[41] E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc. Am. 52, 1123-1128 (1962).
[42] E. N. Leith and J. Upatnieks, "Wavefront reconstruction with continuous-tone objects," J. Opt. Soc. Am. 53, 1377-1381 (1963).
[43] J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
[44] J. Feinberg, "Self-pumped, continuous-wave phase conjugator using internal reflection," Opt. Lett. 7, 486-448 (1982).
[45] A. E. Chiou, T.-Y. Chang, and M. Khoshnevisar, "High-speed photorefractive phase conjugator with wide intensity dynamic range and wide field of view," in OSA Annual Meeting, Vol. 15, 1990 OSA Technical Digest Series, (Optical Society of America, 1990), p. 40.
[46] A. E. Chiou, "Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of microscopic objects," Proc. IEEE 87, 2074-2085 (1999).
[47] C. C. Lin, Y. W. Yu, C. Y. Cheng, and C. C. Sun, "Discovery of a self-pumped, phase-conjugate mirror with high speed, high image quality, and large accepted incidence area," Opt. Engineering 54, 023101 (2015).
[48] 陳緯鑫,小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究,國立中央大學光電所碩士論文,中華民國一百零二年。
[49] I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzue, "Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics," Opt. Express 16, 16711-16722 (2008).
[50] W.-F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quant. Electron. 26, 2166-2185 (1990) .
[51] 陳日康,純相位式電腦全像術及全像光鉗於桿狀粒子旋轉控制之研究,國立中央大學光電科學與工程學系碩士論文,中華民國一百零一年。
[52] https://zh.wikipedia.org/wiki/DVI.
[53] M. Cui, E. J. McDowell, and C. Yang, "Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation," Appl. Phy. Lett. 95, 123702 (2009) .
[54] C. Gu and P. Yeh, "Partial phase conjugation, fidelity, and reciprocity," Opt. Commun. 107, 353-357 (1994).