| 研究生: |
林政寬 Cheng-Kuan Lin |
|---|---|
| 論文名稱: |
n 階置換Cayley 圖之研究 |
| 指導教授: |
黃華民
Hua-Min Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | Cayley |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一個有漢米頓圈的圖,代表圖中任意兩點都有一對內點互斥且通過所有頂點的路徑。
根據Menger′s 定理,在n連通圖中,任意的兩點p, q之間存在著n條內點互斥的路徑。若此n條內點互斥的路徑包含著圖中所有的頂點,則稱p, q是n覆蓋連通。
本論文將以n規則Cayley圖為例來討論覆蓋連通性及其相關特性。
none
[1] S.B. Akers and B. Krishnamurthy, A Group Treoretic Model dor Symmectric Interconnection Networks, IEEE Transaction on Computer, Vol. c-38, No. 4, April 1989, pp. 555-566.
[2] Friedhelm Meyer auf der Heide and Berthold VÖcking , Short paths routing in arbitrary networks, (1998), 12-13.
[3] Ore, Hamiltonian connected graphs, J. Math. Pures. Appl. 55, (1961), 315-321.
[4] Marissa P. Justan, Computer Verification of the Diameter of the n-dimensional Pancake Network.
[5] Douglas B. West, Introduction to Graph Theory, Prentice Hall, 1996.
[6] K. Menger, Zur allgemeinen Kurventheroie, Fund. Math., 10, 1927, 95-115.
[7] Michael Albert, R. E. L. Aldred and Derek Holton, On 3*-connected graphs, Australasian Journal of Combinatorics, 24(2001), 193-207.
[8] 雷偉明, Cayley 圖的直徑與寬直徑的研究, 中央大學數學研究所碩士論文, 1996.
[9] 徐嘉陽, 特殊Cayley 圖的寬距, 中央大學數學研究所碩士論文, 1994.
[10] Chun-Nan Hung, Hong-Chun Hsu, Kao-Yung Liang, and Lih-Hing Hsu, Rong Embedding in Faulty Pancake Graph.
[11] Chang-Hsing Tsai, Jimmy J.M. Tan, Tyne Liang, and Lih-Hsing Hsu, Fault – Tolerant Hamiltonian Laceablility of Hypercubes.
[12] Tseng-Kuei Li, Jimmy J. M. Tan, and Lih-Hsing Hsu, Hamiltonian lacebiblity on edge fault star graph.
[13] Mohammad H. Heydari, and I. Hal Sudborough, On the Diameter of the Pancake Network, Journal of Algorithms, 25 (1997), 67-94.
[14] D. S. Cohen, and M. Blum, Improved bounds for sroting pancakes under a conjucture, Manuscript, Computer Secience Division, University of California, Berkeley, 1992.
[15] M. R. Carey, D. S. Johnson, and S. Lin, Amer. Math. Monthly 84 (1977), 296.
[16] W. H. Gates, and C. H. Papadimitriou, Bounds for sorting by prefix reversal, Discrete Math. 27 (1979), 47-57.
[17] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.
[18] H. Dweighter, Amer. Math. Monthly 89 (1975), 1010.
[19] S. Lakshmivarahan, J. Jwo, and S. K. Dhall, Symmetry in interconnection networks based on Cayley graphs of permutation groups: a survey, Parallel Comput., 19:361-407, 1993.
[20] Thomas W. Hungerfore, Abstract Algebra, Saunders College Publishing, 1997.
[21] F. Harary and M. Lewinter, Hypercubes and other recursively defined hamilton laceable graphs, Congressus Numerantium 60, 1987, pp. 81-84.
[22] S. Y. Hsieh, G. H. Chen and C. W. Ho, Hamiltonian-laceability of star graphs, NETWORKS, vol. 36,2000, pp. 225-232.
[23] Dirac G. A., Some theorems on abstract graphs, Proc. Lobs. Math. Soc. 2, 1952, 69-81.
[24] H. Bass, J. F. C. Kingman, F. Smithies, J.A. Todd,and C. T. C. Wall, Algebraic Graph Theory, Norman Biggs, (1974).
[25] G. Simmons, Alomost all n-dimensional rectangular lattices are Hamiltonian laceable, Congressus Numerantiun 21, 1978, pp. 103-108.