跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鍾荏羽
Ren-Yu Zhong
論文名稱: 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究
A Study on Manufacture of Beveloid Gears with Crowned Tooth Flank Using a CNC Internal Gear Honing Machine
指導教授: 吳育仁
Yu-Ren Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 66
中文關鍵詞: 錐狀齒輪內珩齒機鼓形齒面齒面拓樸法向偏差量
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統大量生產錐狀齒輪(beveloid gear)時,主要經由蝸桿加工,其生產成本較高,而珩齒(Gear Honing)製程可進行齒輪之齒形修整,來達到降低噪音以及改善接觸齒印(Contact pattern),且珩齒的磨耗速度較慢,能有效降低加工成本。故本文提出以CNC內珩齒機加工錐狀齒輪之數學模型,取得錐狀齒輪之齒面拓樸(Tooth flank topology)及法向偏差量,並與文獻提出之錐狀齒輪齒形進行比較,觀察兩齒形之差異,驗證CNC內珩齒機加工錐狀齒輪之數學模型的可行性。接著在CNC內珩齒機加工錐狀齒輪之數學模型中加入內珩輪(Honing wheel)傾角,使機台加工出具鼓形之錐狀齒輪齒面,達到改善齒輪接觸齒印之效果,計算其齒面拓樸點之法向偏差量後,與無鼓型錐狀齒輪進行比較。最後,本文將分別探討具鼓形及標準直齒錐狀齒輪與具鼓形及標準螺旋錐狀齒輪,將其齒面拓樸點上之法向偏差量匯入KISSsoft分析軟體,觀察齒面接觸分佈。


    The finish machining of mass production of beveloid gears are generally conducted through worm processing, which costs relatively higher than gear honing. Gear honing process is used to do the tooth modification, in order to achieve lower noise and improve the contact pattern of the gear pairs. The durability of the honing wheel also reduces the cost of production. Based on the advantages, a mathematical model for fine machining of beveloid gears by CNC internal honing machine is proposed to obtain the tooth flank topology and the normal deviation. By comparing the above results with the profile from the references, the feasibility of the mathematical model for fine machining of beveloid gears by CNC internal honing machine can be verified. Then, a swivel angle of honing wheel is also added to the mathematical model, which enables it to crown the beveloid gear surface and improves the gear contact pattern. The normal deviation of the tooth surface topology is then calculated and compared with non-crowned beveloid gear surface. The differences between crowned, non-crowned, spur and helical beveloid gears are then discussed. The normal deviation on the tooth topology are imported into KISSsoft to show the distribution of gear contact.

    摘要 I Abstract II 謝誌 IV 目錄 V 圖目錄 VII 表目錄 IX 符號對照表 X 第1章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究動機與目的 2 1-4 論文架構 3 第2章 利用齒條刀創成錐狀齒輪之數學模型 4 2-1 齒條刀數學模型 4 2-1-1 座標轉換矩陣 5 2-1-2 求解齒輪曲面 8 2-2 求解錐狀齒輪齒面 9 2-3 本章結論 10 第3章 內珩輪齒面之數學模型建立 11 3-1 利用齒條刀創成螺旋齒輪 11 3-1-1 齒條刀數學模型 11 3-1-2 座標轉換矩陣 12 3-1-3 求解齒輪曲面 14 3-2 利用螺旋齒輪創成珩輪 15 3-2-1 座標轉換矩陣 16 3-2-2 求解齒輪曲面 18 3-3 本章結論 19 第4章 內珩齒機加工錐狀齒輪齒面之數學模型建立 20 4-1 內珩齒機加工錐狀齒輪數學模型 22 4-2 利用內珩輪創成錐狀齒輪 24 4-3 求解齒輪齒面 25 4-4 齒面拓樸圖 25 4-5 本章結論 27 第5章 數值範例 28 5-1 案例一:CNC內珩齒機加工無鼓形錐狀齒輪 28 5-1-1 直齒錐狀齒輪 28 5-1-2 螺旋錐狀齒輪 32 5-2 內珩齒機加工具鼓形齒面之錐狀齒輪 36 5-2-1 直齒錐狀齒輪 36 5-2-2 螺旋錐狀齒輪 41 第6章 總結與未來展望 45 6-1 總結 45 6-2 未來展望 46 參考文獻 47 作者介紹 49

    [1] F. L. Litvin, Theory of Gearing, Washington D. C., 1989.
    [2] 李特文,齒輪嚙合原理,上海科學技術出版社,1984。
    [3] 李華敏、李瑰賢、王知行、汪仁樹、姚立網、李建生,齒輪機構設計與應用,機械工業出版社,2007。
    [4] C. Fetvaci, Computer Simulation of Involute Tooth Generation, Istanbul University, Turkey, 2010.
    [5] H. Stadtfeld, “Tribology Aspects in Angular Transmission Systems,” Gear Technology, pp. 48-52, 2011.
    [6] C. Brecher, M. Brumm, and J. Henser, “Calculation of the Tooth Root Load Carrying Capacity of Beveloid Gears,” Gear Technology, pp. 52-61, 2014.
    [7] K. Mitome, “Conical Involute Gear, Part1: Design and Production System,” Bulletin of the Japan Society of Mechanical Engineers, Vol. 26, No. 212, pp.299-305, 1983.
    [8] 何坤達,具曲線齒形錐狀齒輪與直齒錐狀齒輪之設計參數避免過切範圍及傳動誤差分析的研究,碩士論文,國立成功大學,臺南,2004。
    [9] 陳聖文,具曲線齒形之平行軸圓柱齒輪及錐狀齒輪設計與分析的研究,碩士論文,國立成功大學,臺南,2003。
    [10] 林語尚,具雙向修整齒形之錐狀齒輪的曲面設計、曲率分析、設計參數避免過切範圍及傳動誤差分析之研究,碩士論文,國立成功大學,臺南,2006。
    [11] J. P. Dugas, “Gear Finishing by Shaving, Rolling and Honing - Part II,” Gear Technology, pp. 24-30, 1992.
    [12] J. P. Dugas, “Rotary Gear Honing,” The 16th Annual AGMA Gear Symposium, pp. 36-38, 1988.
    [13] N. W. Wright, H. Schriefer, “Basic Honing and Advanced Free- Form Honing,” Gear Technology, pp. 26-33, 1997.
    [14] T. Yu, Y. X. Qian, K. Dong and S. Y. Wang, “Improving the Precision of Gear Honing with External Honing Ring Using Diamond Dressing Gear,” Advanced Materials Research, Vol. 135, pp. 111-115, 2010.
    [15] 蔡有淳、吳育仁、陳文勝,「以CNC內珩齒機創成具Anti-twist鼓型齒面螺旋齒輪之數學模型建立及齒面接觸分析」,第十九屆全國機構與機器設計學術研討會,屏東,2016。
    [16] Fässler, “Factsheet HMX-400,” Vol. 01.

    QR CODE
    :::