| 研究生: |
蘇丰彥 Feng-Yen Su |
|---|---|
| 論文名稱: |
基於鈮酸鋰晶體1550奈米兆瓦級光學參量放大器設計 Design of Lithium Niobate Crystal Based 1550-nm Terawatt Optical Parametric Amplifier |
| 指導教授: |
汪治平
Jyh-Pyng Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 168 |
| 中文關鍵詞: | 光學參量放大 、啁啾脈衝放大 、鈮酸鋰晶體 、磷酸氧鈦鉀晶體 、角度色散 、非線性光學 、非同軸相位匹配 、紅外光 、高功率雷射 |
| 外文關鍵詞: | Optical parametric amplification, Chirped-pulse amplification, Lithium niobate (LN) crystal, Potassium titanyl phosphate (KTP) crystal, Angular dispersion, Nonlinear optics, Non-collinear phase matching, Infrared, High-power laser |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1550 nm 頻段光學參量放大器,與800 nm 摻鈦藍寶石雷射放大器相比,在雷射科技方面有以下特點: (1) 種子光來源為光纖振盪器,對環境的影響較不敏感,光纖振盪器穩
定度比摻鈦藍寶石振盪器高。 (2) 光參量放大器有較高增益,可以大幅縮短整體光路。 (3) 幫浦光可以直接使用摻釹釔鋁石榴石雷射(Nd:YAG) ,不需要倍
頻。 (4) 光柵脈衝延展器與脈衝壓縮器所產生的二階、三階色散與波長成正相關,因此將中心波長移至1550 nm 有助於縮小延展器與壓縮器的體積。
然而,受限於晶體大小(磷酸氧鈦鉀, KTP) 、晶體吸收(硼酸鋇, BBO),使得1550 nm 光學參量放大器能量受到限制。由於鈮酸鋰晶體
尺寸可超過3 吋,利用此晶體來做為1550 nm 光學參量放大器的增益介質,放大器能量得以提升,但是種子光須有角度色散來滿足相位匹配條件。在2016, György Tóth [1] 設計使用2 片光柵產生角度色散滿足匹配條件,再利用另外2 片光柵補償角度色散與空間色散。
在本論文中,我提出三等邊棱鏡架設來取代György Tóthn 所提出的雙光柵架設。首先,使用一組等邊棱鏡產生空間色散。再設計使用第三顆等邊棱鏡產生角度色散滿足放大匹配條件。並設計放大器幫浦光強度、種子光強度、相位匹配角與晶體厚度。放大後設計使用光學光柵壓縮器補償角度色散。此設計結構較為簡單,且稜鏡價格便宜。
根據數值分析模擬, 使用此新設計可望在1550 nm 頻段產生 200 mJ,脈衝寬度50 fs 的脈衝雷射,尖峰功率為4 兆瓦。在強場
雷射領域方面,由於有質動力與波長平方成正比,中心波長為1550 nm,雷射脈衝的有質動力增加為4 倍,有利於有質動力相關實驗,例如實驗室天文學、雷射加速器。
In comparison with Ti:sapphire laser amplifiers in 800 nm band, the optical parametric amplifiers (OPA) in 1550 nm band shows four the merits: (1) Erbium-doped fiber oscillator generated seed pulse is insensitive to the environment. (2) The higher gain per pass for OPA shortens the optical path. (3) Nd:YAG laser without second-harmonic generation serves as the pumping
laser. (4) The 1550-nm system shrinks the size of the grating-pair based stretcher and compressor because the second-order and third-order dispersion from the stretcher and compressor positively correlate with the wavelength.
However, the output energy of 1550-nm OPA is limited by crystal size (Potassium titanyl phosphate, KTP) and crystal absorption (Barium borate, BBO). A lithium niobate (LN) crystal as the gain media for the 1550-nm OPA system enables to enhance the output energy since the fabrication of more than 3-inch crystal size is available, but the angular dispersion of seed is critical to the phase-matching condition. In 2016, György Tóth [1] utilized a double-grating setup to generate the required angular dispersion to match the phase-matching condition, and then utilized one
more double-grating setup to compensate the spatial chirp and angular dispersion.
In this thesis, I propose a triple-prism setup to replace the György Tóth's double-grating setup. Firstly, a prism-pair and other one prism generate a spatial chirp and the required angular dispersion for the phase-matching
condition, respectively. Secondly, the pumping intensity, seed
intensity, the phase-matching angle and the crystal length are designed for
the amplification. Thirdly, a grating-pair based compressor to compensate
the angular dispersion. Compared with György Tóth's double-grating setup, the triple-prism setup is concise and economical.
According to the numerical simulation, this new design of 1550-nm OPA is expected to generate 50-fs pulse laser with output energy 200 mJ and peak power 4 TW. Furthermore, the ponderomotive energy is quadruple compared with the 800-nm Ti:sapphire lasers due to the double-larger wavelength. Hence, this new system of 1550-nm OPA benefits high energy
density physics, e.g. laboratory astronomy and laser acceleration.
[1] G. Tóth, L. Pálfalvib, L. Tokodib, J. Heblingabc, and J. A. Fülöp, “Scalable broadband opcpa in lithium niobate with signal angular dispersion,” Opt. Commun., vol. 370, pp. 250–255, 2016. doi: 10.1016/j.optcom.2016.03.025.
[2] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Comm., vol. 56, pp. 219–221, 1985. doi: 10.1016/0030-4018(85)90120-8.
[3] R. W. Boyd, Nonlinear Optics, 3rd. USA: Academic Press, Inc., 2008, isbn: 978-0-12-369470-6. [Online]. Available: https://www.sciencedirect.com/book/
9780123694706/nonlinear-optics (visited on 07/10/2020).
[4] I. Jovanovic, “Chirped-pulse amplification: Ultrahigh peak power production from compact short-pulse laser systems,” Optik Photonik, vol. 5, pp. 30–33, 2010.
[5] J. Moses, C. Manzoni, S.-W. Huang, G. Cerullo, and F. X. Kärtner, “Temporal optimization of ultrabroadband high-energy opcpa,” Opt. Express, vol. 17, pp. 5540–5555, 2009. doi: 10.1364/OE.17.005540.
[6] A.Dubietis, G.Jonušauskas, and A.Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in bbo crystal,” Opt.
Comm., vol. 88, pp. 437–440, 1992. doi: 10.1016/0030-4018(92)90070-8.
[7] R. T. Zinkstok, S. Witte, W. Hogervorst, and K. S. E. Eikema, “High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control,” Opt. Lett., vol. 30, pp. 78–80, 2005. doi: 10.1364/OL.30.000078.
[8] A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, “Highenergy femtosecond pulse amlification in a quasi-phase-matched parametric amplifier,” Opt. Lett., vol. 23, pp. 210–212, 1998. doi: 10.1364/OL.23.000210.
[9] Z. Gan, L. Yu, S. Li, C. Wang, X. Liang, Y. Liu, W. Li, Z. Guo, Z. Fan, X. Yuan, L. Xu, Z. Liu, Y. Xu, J. Lu, H. Lu, D. Yin, Y. Leng, R. Li, and Z. Xu, “200 j high efficiency ti:sapphire chirped pulse amplifier pumped by temporal dual-pulse,” Opt. Express, vol. 25, pp. 5169–5178, 2017. doi: 10.1364/OE.25.005169.
[10] L. Yu, Y. Xu, Y. Liu, Y. Li, S. Li, Z. Liu, W. Li, F. Wu, X. Yang, Y. Yang, C. Wang, X. Lu, Y. Leng, R. Li, and Z. Xu, “High-contrast front end based on cascaded xpwg and femtosecond opa for 10-pw-level ti:sapphire laser,” Opt. Lett., vol. 26, pp. 2625–2633, 2018. doi: 10.1364/OE.26.002625.
[11] X. Zeng, K. Zhou, Y. Zuo, Q. Zhu, J. Su, X. Wang, X. Wang, X. Huang, X. Jiang, D. Jiang, Y. Guo, N. Xie, S. Zhou, Z. Wu, J. Mu, H. Peng, and F. Jing, “Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification,” Opt. Lett., vol. 42, pp. 2014–2017, 2017. doi: 10.1364/OL.42.002014.
[12] J. H. Sung, H. W. Lee, J. Y. Yoo, J. W. Yoon, C. W. Lee, J. M. Yang, Y. J. Son, Y. H. Jang, S. K. Lee, and C. H. Nam, “4.2 pw, 20 fs ti:sapphire laser at 0.1 hz,” Opt. Lett., vol. 42, pp. 2058–2061, 2017. doi: 10.1364/OL.42.002058.
[13] E. W. Gaul, M. Martinez, J. Blakeney, A. Jochmann, M. Ringuette, D. Hammond, T. Borger, R. Escamilla, S. Douglas, W. Henderson, G. Dyer, A. Erlandson, R. Cross, J. Caird, C. Ebbers, and T. Ditmire, “Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed nd:glass
amplifier,” Appl. Opt., vol. 49, pp. 1676–1681, 2010. doi: 10.1364/AO.49.001676.
[14] G. A. Mourou, G. Korn, W. Sandner, and J. L. Collier, Eds., Whitebook of Extreme Light Infrastructure. THOSS Media GmbH. [Online]. Available: https://eli-laser.eu/media/1019/eli-whitebook.pdf (visited on 04/21/2020).
[15] G. R. Fowles, Introduction to modern optics, 2nd. New York, USA: Dover, 1986, pp. 159, 172 and 207, isbn: 0486659577.
[16] C. Manzoni and G. Cerullo, “Design criteria for ultrafast optical parametric amplifiers,” Journal of Optics, vol. 18, p. 103 501, 2016. doi: 10.1088/2040-8978/18/10/103501.
[17] F. Zernike and J. E. Midwinter, Applied Nonlinear Optics. USA: Wiley-Interscience, 1973, isbn: 0471982121.
[18] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd. USA: Wiley-Interscience, 2007, pp. 927, isbn: 978-0-47-135832-9.
[19] B. W. Mayer, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Sub-fourcycle laser pulses directly from a high-repetition-rate optical parametric chirpedpulse amplifier at 3.4 μ m,” Opt. Lett., vol. 38, pp. 4265–4268, 2013. doi: 10.1364/OL.38.004265.
[20] O. D. Mücke, D. Sidorov, P. Dombi, A. Pugžlys, S. Ališauskas, V. Smilgevičius, N. Forget, J. Posius, L. Giniūnas, R. Danielius, and A. Baltuška, “10-mj optically synchronized cep-stable chirped parametric amplifier at 1.5 μ m,” Opt. Spectrosc., vol. 108, pp. 456–462, 2010. doi: 10.1134/S0030400X10030215.
[21] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp. 1918–1939, 1962. doi: 10.1103/PhysRev.127.1918.
[22] D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in sio2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett., vol. 64, pp. 3071–3073, 1994. doi: 10.1063/1.111350.
[23] C.-L. Tsai, “High-energy optical parametric chirped pulse amplifiers and their applications,” PhD thesis, National Tsing Hua University, Apr. 2020.
[24] E. Optics. (). Potassium titanyl phosphate-ktp crystals, [Online]. Available: https://eksmaoptics.com/nonlinear-and-laser-crystals/nonlinear-crystals/potassium-titanyl-phosphate-ktp-crystals/ (visited on 07/10/2020).
[25] G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in ktp and isomorphic compounds,” Appl. Opt., vol. 39, pp. 5058–5069, 2000. doi: 10.1364/AO.39.005058.
[26] D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate,” J. Opt. Soc. Am. B, vol. 14, pp. 3319–3322, 1997. doi: 10.1364/JOSAB.14.003319.
[27] Tydex. (). Lithium niobate, [Online]. Available: http://www.tydexoptics.com/materials1/materials_for_nonlinear_optics/lithium_niobate/ (visited on 07/10/2020).
[28] G. Agrawal, Nonlinear Fiber Optics, 5th. USA: Academic Press, Inc., 2013, pp. 615–617, isbn: 978-0-12-397023-7. doi: 10.1016/C2011-0-00045-5.
[29] K. Sharma, Optics, 1th. USA: Academic Press, Inc., 2006, pp. 412–413, isbn: 978-0-12-370611-9.
[30] J. Bromage, J. Rothhardt, S. Hädrich, C. Dorrer, C. Jocher, S. Demmler, J. Limpert, A. Tünnermann, and J. D. Zuegel, “Analysis and suppression of parasitic processes in noncollinear optical parametric amplifiers,” Opt. Express, vol. 19, pp. 16797–16808, 2011. doi: 10.1364/OE.19.016797.
[31] H. Cao, S. Tóth, M. Kalashnikov, V. Chvykov, and K. Osvay, “Highly efficient, cascaded extraction optical parametric amplifier,” Opt. Express, vol. 26, pp. 7516–7527, 2018. doi: 10.1364/OE.26.007516.
[32] I. N. Ross, A. J. Langley, and P. Taday, “A simple achromatic pulse stretcher,”
Central Laser Facility Annual Report, vol. 1999–2000, pp. 201–203, 2000. [Online]. Available: https://www.clf.stfc.ac.uk/Pages/ar99-00.pdf (visited on 07/10/2020).
[33] Y. Tang, C. Hooker, O. Chekhlov, S. Hawkes, J. Collier, and P. P. Rajeev, “Transmission grating stretcher for contrast enhancement of high power lasers,” Opt. Express, vol. 22, pp. 29 363–29 374, 2014. doi: 10.1364/OE.22.029363.
[34] E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE Journal of Quantum Electronics, vol. 5, pp. 454–458, 1969. doi: 10.1109/JQE.1969.1076303.
[35] J.-L. Tapié and G. Mourou, “Shaping of clean, femtosecond pulses at 1.053 μ m for chirped-pulse amplification,” Opt. Lett., vol. 17, pp. 136–138, 1992. doi: 10.1364/OL.17.000136.
[36] K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, and H. Takuma, “100-tw sub-20-fs ti:sapphire laser system operating at a 10-hz repetition rate,” Opt. Lett., vol. 23, pp. 1468–1470, 1998. doi: 10.1364/OL.23.001468.
[37] caepzzx. (). Opa-wavefront-aberration, [Online]. Available: https://github.com/caepzzx/OPA-Wavefront-Aberration (visited on 08/18/2020).
[38] S. Mehta. (). Shift matrix, [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/31840-shift-matrix (visited on 08/18/2020).