跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳貽中
Yi-Chung Chen
論文名稱: 在行動對等式網路中以興趣為基礎的資源搜尋協定
An Interest-Based Lookup Protocol in Mobile Peer-to-Peer Networks
指導教授: 許健平
Jang-Ping Sheu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 92
語文別: 英文
論文頁數: 38
中文關鍵詞: 行動隨意網路對等式檔案共享查詢協定
外文關鍵詞: file sharing, lookup protocol, mobile ad hoc network (MANET), peer-to-peer
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對等式網路(peer-to-peer network)近年來被提出為一個全新的資源分享架構。不同於client/server架構,在對等式網路中每個參與者(peer)都同時扮演著server與client的角色,資源分享就直接藉由對等式網路中各個參與者所提供。對等式網路與無線隨意網路(mobile ad hoc network)都擁有自我組成(self-organization)、分散式(decentralization)與動態的網路拓樸(dynamic topology)的特性。因此,對等式網路技術也非常適合應用於無線隨意網路中。資源搜尋協定是對等式運算中最重要的議題之一。在本篇論文中,我們提出應用於無線隨意網路中以興趣為基礎的有效節省頻寬的資源搜尋協定。當其中一個參與者希望搜尋檔案時,就廣播一個含有依本身興趣就決定的一組關鍵字的查詢訊息。位於此參與者傳輸範圍內的鄰居們收到這封查詢訊息時,如果也對此查詢有興趣才幫忙繼續傳遞此查詢訊息。模擬的結果顯示我們的提出的方法有較高的查詢成功率、系統擴充性、網路利用的有效性,並且較有回應性。最後,我們提出的方法還可避免自私的行為發生。


    Peer-to-peer networks and mobile ad hoc networks (MANETs) share the same characteristics of self-organization, decentralization, and dynamic topology. Therefore, it is natural to apply peer-to-peer techniques to MANETs. A lookup protocol, one of the most important issues in a peer-to-peer computing, is an essential component for resource searching. In this thesis, we propose interest-based bandwidth-efficient lookup protocols, simple lookup protocol and advanced lookup protocol, for a mobile environment. A peer willing to search files broadcasts a query message with keywords relevant to its interests to its neighbors in the transmission range, and only those neighbors also interested in the query forward. Simulation results show that our protocols have higher success rate and raise the scalability and bandwidth efficiency comparing to the previous work. Besides, our protocols are more responsive. Finally, our protocols can avoid selfish behaviors, since the behavior of forwarding queries benefits not only the source node but also the forwarding node.

    1 Introduction 1 2 Preliminaries 4 2.1 Peer-to-Peer Lookup Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Chord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Gnutella . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Passive Distributed Indexing (PDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 3 Protocol Description 12 3.1 Simple Lookup Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Advanced Lookup Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Maintenance of Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 Simulation Results 25 5 Conclusions 34 Bibliography 35 List of Figures Figure 1 Centralized Peer-to-Peer System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Figure 2 Decentralized Peer-to-Peer System . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Figure 3 Hybrid Peer-to-Peer Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 4 Identifier Circle (Ring) Consisting of Ten Nodes Storing Five Keys . .8 Figure 5 Simple Lookup Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 6 Feedback table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 7 Advanced Lookup Protocol – Receiving Query . . . . . . . . . . . . . . . . . 21 Figure 8 Advanced Lookup Protocol – Receiving QueryHit . . . . . . . . . . . . . . 22 Figure 9 Number of Query Requests vs. Success Rate . . . . . . . . . . . . . . . . . . . 26 Figure 10 Messages per Query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Figure 11 Number of Query Requests vs. Messages per Success . . . . . . . . . . . .28 Figure 12 Number of Query Requests vs. Query Efficiency . . . . . . . . . . . . . . . .29 Figure 13 Number of Query Requests vs. Search Responsiveness . . . . . . . . . . .30 Figure 14 Number of Query Requests vs. Search Efficiency. . . . . . . . . . . . . . . .31 Figure 15 Number of Query Requests vs. Average Number of Files Found. . . . 32 Figure 16 Number of Query Requests vs. Messages per Query. . . . . . . . . . . . . .32

    [1] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva, “A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols,” in Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 85-97, 1998.
    [2] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A Distributed Anonymous Information Storage and Retrieval System,” in Proceedings of the International Computer Science Institute (ICSI) Workshop on Design Issues in Anonymity and Unobservability, pp. 311-320, July 2000.
    [3] S. Daswani and A. Fisk, Gnutella UDP Extension for Scalable Searches v0.1.
    [4] eDonkey, http://www.edonkey2000.com/.
    [5] eMule, http://www.emule-project.net/.
    [6] F. P. Franciscani, M. A. Vasconcelos, R. P. Couto, and A. A. F. Loureiro, “Peer-to-Peer over Ad Hoc Networks: (Re)Configuration Algorithms,” in Proceedings of the International Parallel and Distributed Processing Symposium, pp.32.2, 2003.
    [7] Gnutella, The Gnutella Protocol Specification v0.4.
    [8] Gnutella2, The Gnutella2 Protocol Specification.
    [9] S. K. Goel, M. Singh, and D. Xu, “Efficient Peer-to-Peer Data Dissemination in Mobile Ad-Hoc Networks,” in Proceedings of the International Conference on Parallel Processing Workshops, pp. 152-158, 2002.
    [10] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2Cast: Peer-to-peer Patching Scheme for VoD Service,” in Proceedings of the International Conference on World Wide Web, pp. 301-309, 2003.
    [11] D. Hand, H. Mannila, and P. Smyth, “Principles of Data Mining,” MIT Press, 2001.
    [12] D. B. Johnson, D. A. Maltz, and J. Broch, “DSR: The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks” in Ad Hoc Networking, Edited by Charles E. Perkins, Chapter 5, pp. 139-172, Addison-Wesley, 2001
    [13] K. Kant, R. Iyer, and V. Tewari, “A Framework for Classifying Peer-to-Peer Technologies”, in Proceedings of the Second IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 338-345, 2002.
    [14] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy, “Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web,” in Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pp. 654-663, 1997.
    [15] KaZaA, http://www.kazaa.com/.
    [16] T. Lin and H. Wang, “Search Performance Analysis in Peer-to-Peer Networks,” in Proceedings of the Third International Conference on Peer-to-peer Computing, pp. 204-205, 2003.
    [17] C. Lindemann and O. P. Waldhorst, “A Distributed Search Service for Peer-to-Peer File Sharing in Mobile Applications,” in Proceedings of the Second International Conference on Peer-to-Peer Computing, pp. 73-80, 2002.
    [18] N. Minar, “Distributed Systems Topologies,” in Proceedings of the O''Reilly Peer-to-Peer and Web Services Conference, 2001.
    [19] Morpheus, http://www.morpheus.com/.
    [20] Napster, http://www.napster.com.
    [21] A. Oram, “Peer-to-Peer: Harnessing the Benefits of a Disruptive Technology,” O’Reilly & Associates, Inc, 2001.
    [22] M. Papadopouli, and H. Schulzrinne, “Effects of Power Conservation, Wireless Coverage and Cooperation on Data Dissemination among Mobile Devices,” in Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 117-127, 2001.
    [23] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers,” in Proceedings of ACM SIGCOMM''94, pp. 234-244, 1994.
    [24] C. E. Perkins and E.M. Royer, “Ad Hoc On-Demand Distance Vector Routing,” in Proceedings of the Second IEEE Workshop on Mobile Computing Systems and Applications (WMCSA), pp. 90-100, 1999.
    [25] G. P. Premkumar, “Alternate Distribution Strategies for Digital Music,” Communications of the ACM, Vol. 46, No. 9, pp. 89-95, September 2003.
    [26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable Content-Addressable Network,” in Proceedings of ACM SIGCOMM 2001, pp. 161-172, 2001.
    [27] M. Rieanu, “Peer-to-Peer Architecture Case Study: Gnutella Network,” in Proceedings of the First International Conference on Peer-to-Peer Computing, pp. 99-100, 2001.
    [28] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object Location and Routing for Large-Scale Peer-to-Peer Systems,” in Proceedings of the IFIP/ACM International Conference on Distributed Systems Platforms, pp. 329-350, November 2001.
    [29] R. Schollmeier, I. Gruber, and M. Finkenzeller, “Routing in Mobile Ad Hoc and Peer-to-Peer Networks. A Comparison,” in Proceedings of International Workshop on Peer-to-Peer Computing, 2002.
    [30] A. Silberschatz, G. Gagne, and P. B. Galvin, “Operating System Concepts,” John Wiley & Sons, Inc., Sixth Edition, 2002.
    [31] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications,” IEEE/ACM Transactions on Networking, Vol. 11, No. 1, pp. 17-32, February 2003.
    [32] Y. Wang and J. Vassileva, “Trust and Reputation Model in Peer-to-Peer Networks,” in Proceedings of the Third International Conference on Peer-to-peer Computing, pp. 150-157, 2003.
    [33] J. Xiao, Y. Zhang, X. Jia, and T. Li, “Measuring Similarity of Interests for Clustering Web-Users,” in Proceedings of the 12th Australasian Database Conference, pp. 107-114, 2001.

    QR CODE
    :::