| 研究生: |
林昭榮 Lin-Chao Jung |
|---|---|
| 論文名稱: |
特殊的界面活性劑與異常的潤濕現象 Atypical Surfactant & Unusual Wetting |
| 指導教授: |
曹恒光
Tsao-Heng Kwong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 邊界效應 、潤濕現象 、界面活性劑 |
| 外文關鍵詞: | edge effect, wetting phenomenon, surfactant |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗藉由水滴潤濕物質表面,加上外界氣相三相所造成三方向的張力來維持系統平衡,利用楊氏方程式(Young’s equation)熱力學平衡,而在液滴與物質接觸處出現一個角度,定義為接觸角(contact angle),接觸角是一個界定濕潤程度(wettability)的指標,也能判別物質的親疏水性。
生活中常接觸不同的溶劑,其中存在少數相似界面活性劑的特性,例如濕潤效果極佳、會產生微胞(micelle)等特性。業界常用的去光阻劑BDG就是這類溶劑,因此可利用接觸角界定其潤濕程度,利用密度計、聲速計等儀器來分析其是否產生微胞的證據,甚至再文獻中得知可利用核磁共振儀(NMR)來判斷形成微胞時的分子數,以區分BDG與傳統界面活性劑的相關性。
從上述的楊氏熱力學平衡,固定液體種類與固體材料,加上氣相是不會變的空氣,可知液體與固體所形成的接觸角理當固定(排除小誤差),但實驗過程中發現在某些條件下(此實驗指亦體接觸邊界),系統仍會維持平衡,但卻違反Young’s equation,所以利用熱力學平衡穩態時能量最低重新推導一套符合接處邊界時接觸角的公式,再改變不同液體與材料去分析新公式的正確性與限定條件。
We have studied the atypical nonionic surfactant 2-(2-Butoxyethoxy)-ethanol (BDG, C4E2) and unusual droplet wetting at the edge of a homogeneous surface. Owing to the short alkyl tail, BDG is typically regarded as a solvent completely miscible with water. However, our experimental results based on bulk (density and sound velocity) and surface properties (surface tension and contact angle) show that BDG possesses the typical feature of surfactant: a sudden slope change of the property-concentration curve. Nonetheless, the critical micelle concentration determined by the turning point is usually high, about 1 M. As a result, BDG possesses the dual nature of solvent and surfactant and can be a good cleaning solution for post-chemical mechanical polishing in semiconductor industry.
When a droplet is deposited on a flat, homogenous surface, the intrinsic contact angle depicts the wettability of liquid on solid substrates. We perform droplet wetting experiments atop cylindrical frustums. Three different regimes are observed. In the first regime, the droplet does not reach the edge and the Young-Laplace equation is followed. After the droplet reaches the edge, the contact angle continues increasing with the liquid volume due to advanced pinning. In the second regime, the apparent contact angle cannot be described by the Young-Laplace equation. Once the droplet volume (or the contact angle) exceeds a critical value, the droplet starts to invade the slanted surface with the intrinsic contact angle or falls off like avalanche. In the third regime, the latter occurs because the gravity becomes important.
[1] 葉銘智,分子構型對濕透行為之影響研究,國立台灣大學化學工
程學研究所博士論文(2003.6)。
[2] 陳益滽、張翼、詹文碩、陽永明、戴寶通,廢溶劑回收系統於
TFT-LCD製造廠之應用,第十二卷第二期第五十四頁,奈米通訊
(2005.5)。
[3] 土肥 俊郎,半導體平坦化CMP技術,全華科技(2000)。
[4] S.Smith,P.Wiseman,L.Boudreau,G.Marangoni and R.Palepu,
“Effect of Microheterogeneity on Bulk and Surface
Properties of Binary Mixtures of Polyoxyethene Glycol
Momobutyl Ethers with Water”,Journal of Solution
Chemistry,Vol.23,No.2,1994。
[5] 簡振龍,陰/陽離子界面活性劑的混合增效作用之研究,國立成
功大學化學工程學系碩士論文(2000.6)
[6] 洪佳惠,膽固醇與膽鹽對微脂粒穩定度的影響,中央大學化材系
論文(2003.6)。
[7] 張有義,郭蘭生,膠體及界面化學入門,高立圖書(1998)。
[8] N.K.ADAM,”Use of the Term ''Young''s Equation'' for
Contact Angles”, Nature 180, 809 - 810 (19October
1957)。
[9] Adam Winkleman,Gilad Gotesman,Alexander Yoffe and
Ron Naaman,”Immobilizing a Drop of Water: Fabricating
Highly Hydrophobic Surfaces that Pin Water Droplets”,
Nano Lett., 8 (4),1241–1245,2008。
[10] Rui Zheng*,”A Study of Evaporative Deposition Process:
Pipes and Truncated Transport Dynamics”,cond–mat
,soft(2008)。
[11] R.Mohammadi,J.Wassink and A.Amirfazli,”Effect of
Surfactants on Wetting of Super-Hydrophobic Surfaces”,
Langmuir,20,9657-9662,2004。