| 研究生: |
蔡沛樺 Pei-hua Tsai |
|---|---|
| 論文名稱: |
放線菌酮透過ERK蛋白激酶途徑刺激3T3-L1脂肪細胞內SOCS-3基因的表現 Cycloheximide stimulated SOCS-3 gene expression in 3T3-L1 adipocyte via the ERK pathway |
| 指導教授: |
蔡沛樺
Pei-hua Tsai 高永旭 Yung-Hsi Kao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 3T3-L1脂肪細胞 、SOCS-3基因 、放線菌酮 |
| 外文關鍵詞: | 3T3-L1 adipocyte, SOCS-3, cycloheximide |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
SOCS-3 (suppressors of cytokine signaling-3) 蛋白質的分子量為24.7 kDa,在3T3-L1脂肪細胞上它會阻抗胰島素的訊息傳導。然而我們實驗室意外中發現:3T3-L1脂肪細胞在有cycloheximide (放線菌酮) 蛋白質合成抑制劑處理時, SOCS-3 mRNA的表現會上升,所以本論文目的是研究cycloheximide會如何影響脂肪細胞內SOCS-3 mRNA的表現。結果發現cycloheximide促進SOCS-3 mRNA的表現會因處理時間與劑量的不同而有差異,由於Actinomycin-D (RNA合成抑制劑) 會抑制cycloheximide的作用,顯示需要新的mRNA合成。有趣的是,在cycloheximide的處理中,細胞內SOCS-3的蛋白質表現並不會改變,其次,ERKs抑制劑例如U0126的處理,會減少cycloheximide增加的SOCS-3 mRNA表現量,顯示cycloheximide透過ERKs激酶相關的途徑去促進SOCS-3 mRNA表現。利用另一種蛋白質合成抑制劑例如anisomycin做處理,也會促進SOCS-3基因的表現。在不同的細胞株裡,cycloheximide對C3H10T1/2小鼠脂肪細胞和C2C12小鼠肌纖維母細胞也有促進SOCS-3 mRNA表現的作用,但不影響H4IIEC3大鼠肝腫瘤細胞內SOCS-3 mRNA的表現,顯示cycloheximide的作用有細胞特異性。我們另外發現cycloheximide會影響其它SOCS成員例如SOCS-1,SOCS-2,SOCS-4,SOCS-5,SOCS-6,SOCS-7及CIS 基因的表現,但高峰值出現的時間有所差異。最後,當處理5 μg/ml cycloheximide 6小時以內,它並不會造成前脂肪細胞和脂肪細胞的毒性,但當處理高劑量10 μg/ml 6小時以上或5 μg/ml 12小時以上,它會減少細胞數及存活率。綜合以上的結果,我們的結論:cycloheximide會透過ERKs激酶途徑調節脂肪細胞內SOCS-3 基因的表現。
SOCS-3 (suppressors of cytokine signaling-3) is a 24.7 kDa protein that plays a very important role in the signaling transduction of insulin resistance caused by resistin in 3T3-L1 adipocytes. However, we found that cycloheximide, a protein synthesis inhibitor, could stimulate SOCS-3 mRNA expression in 3T3-L1 adipocytes. Despite of these, the exact mechanism of cycloheximide’s action on SOCS-3 gene expression and its effect on adipocyte are still unknown. Therefore, this study was to investigate how cycloheximide could affect the expression of adipocyte SOCS-3 gene. We found that cycloheximide stimulated SOCS-3 mRNA expression in a time- and dose-dependent manner. Actinomycin-D (a transcription inhibitor) blocked the cycloheximide-stimulated SOCS-3 mRNA expression, suggesting the need of a new mRNA synthesis, but not due to changes in the mRNA stability. Interestingly, cycloheximide did not significantly alter the SOCS-3 protein levels. Pretreatment with U0126 (an ERK MAPK inhibitor) reduced the cycloheximide-stimulated SOCS-3 mRNA levels by 50%. This suggests the ERK-dependent effect of cycloheximide. Treatment with an additional protein inhibitor, such as anisomycin, also stimulated SOCS-3 mRNA expression in C3H10T1/2 adipocyte and C2C12 myoblast, but it had no effect on H4IIEC3 hepatoma cell. This suggests that the cycloheximide effects vary with the cell types. Moreover, cycloheximide stimulated gene expression of other SOCS family members, such as SOCS-1,SOCS-2,SOCS-4,SOCS-5,SOCS-6,SOCS-7 and CIS;However, the different peak time of the individual SOCS mRNA level occurred among SOCSs. Finally, we found that the dose of cycloheximide at 10 μg/ml for 6-24 h and 5 μg/ml for 12-24 h, but not 5 μg/ml within 6 h, reduced cell number and cell viability of the preadipocytes and adipocytes. We conclude that cycloheximide stimulates 3T3-L1 adipocyte SOCS-3 mRNA expression via the MEK1/ERK-dependent pathway. Further study is needed to demonstrate whether the effects of cycloheximide on SOCS-3 gene expression are related to its action on fat cell viability.
1. Leach BE, Ford JH, and Whiffen AJ (1947) Actidione, an antibiotic from Streptomyces griseus. J Am Chem Soc 69(2):474.
2. Whiffen AJ, Bohonos N, and Emerson RL (1946) The Production of an Antifungal Antibiotic by Streptomyces griseus. J Bacteriol 52(5):610-611.
3. Kerridge D (1958) The effect of actidione and other antifungal agents on nucleic acid and protein synthesis in Saccharomyces carlsbergensis. J Gen Microbiol 19(3):497-506.
4. Siegel MR and Sisler HD (1963) Inhibition of Protein Synthesis in Vitro by Cycloheximide. Nature 200:675-676.
5. Baliga BS, Pronczuk AW, and Munro HN (1969) Mechanism of cycloheximide inhibition of protein synthesis in a cell-free system prepared from rat liver. J Biol Chem 244(16):4480-4489.
6. Grollman AP (1966) Structural basis for inhibition of protein synthesis by emetine and cycloheximide based on an analogy between ipecac alkaloids and glutarimide antibiotics. Proc Natl Acad Sci U S A 56(6):1867-1874.
7. Mahadevan LC and Edwards DR (1991) Signalling and superinduction. Nature 349(6312):747-748.
8. Zinck R, et al. (1995) Protein synthesis inhibitors reveal differential regulation of mitogen-activated protein kinase and stress-activated protein kinase pathways that converge on Elk-1. Mol Cell Biol 15(9):4930-4938.
9. Kyriakis JM, et al. (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369(6476):156-160.
10. Alessenko AV, et al. (1997) Mechanisms of cycloheximide-induced apoptosis in liver cells. FEBS Lett 416(1):113-116.
11. Ito K, et al. (2006) Molecular mechanism investigation of cycloheximide-induced hepatocyte apoptosis in rat livers by morphological and microarray analysis. Toxicology 219(1-3):175-186.
12. Sutter RP and Moldave K (1966) The interaction of aminoacyl transferase II and ribosomes. J Biol Chem 241(8):1698-1704.
13. Dennis VA, Jefferson A, Singh SR, Ganapamo F, and Philipp MT (2006) Interleukin-10 anti-inflammatory response to Borrelia burgdorferi, the agent of Lyme disease: a possible role for suppressors of cytokine signaling 1 and 3. Infect Immun 74(10):5780-5789.
14. Bruun C, et al. (2009) Suppressor of cytokine signalling-3 inhibits Tumor necrosis factor-alpha induced apoptosis and signalling in beta cells. Mol Cell Endocrinol 311(1-2):32-38.
15. Kuo PL, Ni WC, Tsai EM, and Hsu YL (2009) Dehydrocostuslactone disrupts signal transducers and activators of transcription 3 through up-regulation of suppressor of cytokine signaling in breast cancer cells. Molecular Cancer Therapeutics 8(5):1328-1339.
16. Larsen L and Ropke C (2002) Suppressors of cytokine signalling: SOCS. APMIS 110(12):833-844.
17. Croker BA, Kiu H, and Nicholson SE (2008) SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol 19(4):414-422.
18. Palmer DC and Restifo NP (2009) Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol 30(12):592-602.
19. Steppan CM, Wang J, Whiteman EL, Birnbaum MJ, and Lazar MA (2005) Activation of SOCS-3 by resistin. Mol Cell Biol 25(4):1569-1575.
20. Marine JC, et al. (1999) SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell 98(5):617-627.
21. Sasaki A, et al. (2000) CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem 275(38):29338-29347.
22. Rui L, Yuan M, Frantz D, Shoelson S, and White MF (2002) SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 277(44):42394-42398.
23. Hilton DJ, et al. (1998) Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci U S A 95(1):114-119.
24. Croker BA, et al. (2004) SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis. Immunity 20(2):153-165.
25. Croker BA, et al. (2003) SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol 4(6):540-545.
26. Lang R, et al. (2003) SOCS3 regulates the plasticity of gp130 signaling. Nat Immunol 4(6):546-550.
27. Weber A, et al. (2005) SOCS-3 is frequently methylated in head and neck squamous cell carcinoma and its precursor lesions and causes growth inhibition. Oncogene 24(44):6699-6708.
28. Seki Y, et al. (2002) Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proc Natl Acad Sci U S A 99(20):13003-13008.
29. Kario E, et al. (2005) Suppressors of cytokine signaling 4 and 5 regulate epidermal growth factor receptor signaling. J Biol Chem 280(8):7038-7048.
30. Krebs DL, et al. (2002) SOCS-6 binds to insulin receptor substrate 4, and mice lacking the SOCS-6 gene exhibit mild growth retardation. Mol Cell Biol 22(13):4567-4578.
31. Banks AS, et al. (2005) Deletion of SOCS7 leads to enhanced insulin action and enlarged islets of Langerhans. J Clin Invest 115(9):2462-2471.
32. Metcalf D, et al. (2000) Gigantism in mice lacking suppressor of cytokine signalling-2. Nature 405(6790):1069-1073.
33. He B, et al. (2003) SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. P Natl Acad Sci USA 100(24):14133-14138.
34. Baliga BS and Munro HN (1971) Specificity of mammalian transferase II binding to ribosomes. Nat New Biol 233(43):257-258.
35. Baliga BS, Nolan RD, and Munro HN (1971) The site and nature of transferase II-guanosine triphosphate complex attachment to mammalian ribosomes. Biochem J 124(5):51P.
36. Munro HN, Baliga BS, and Pronczuk AW (1968) In vitro inhibition of peptide synthesis and GTP hydrolysis by cycloheximide and reversal of inhibition by glutathione. Nature 219(5157):944-946.
37. Hsieh CF, et al. (2010) Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways. Planta Med 76(15):1694-1698.
38. Hung PF, et al. (2005) Antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. Am J Physiol Cell Physiol 288(5):C1094-1108.
39. Ahmad N and Mukhtar H (1999) Green tea polyphenols and cancer: biologic mechanisms and practical implications. Nutr Rev 57(3):78-83.
40. Emanuelli B, et al. (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem.
41. Wang Z, et al. (2000) Leptin resistance of adipocytes in obesity: role of suppressors of cytokine signaling. Biochem Biophys Res Commun 277(1):20-26.
42. Fasshauer M, et al. (2004) Insulin resistance-inducing cytokines differentially regulate SOCS mRNA expression via growth factor- and Jak/Stat-signaling pathways in 3T3-L1 adipocytes. J Endocrinol 181(1):129-138.
43. Charlotte L and Hakan B (2001) PRL receptor-mediated effects in female mouse adipocytes: PRL induces suppressors of cytokine signaling expression and suppresses insulin-induced leptin production in adipocytes in vitro. Endocrinology 142(11):4880–4890.