跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周裕然
yu-jan chou
論文名稱: 多段進流去氮除磷系統穩動態處理及
The characteristics of nutrient removal in multiple stages in enhanced biological nutrient removal process
指導教授: 歐陽嶠暉
Chaio-Fuei Ouyang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 210
中文關鍵詞: TNCU-III 程序動態多段進流柔性計算原理
外文關鍵詞: soft-computing technology, dynamic loading, TNCU-III process
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究所探討之TNCU-III 程序由厭氧及多段好氧-缺氧槽串聯而成,在無回流好氧硝化液的情況下,藉由階梯進流結合傳統活性污泥程序的方式,可提升總氮去除效率而不造成總磷去除效果的降低。本研究以穩、動態進流的方式進行微生物馴養,探討TNCU-III 程序於不同進流狀態時之營養鹽去除特性,並輔以分子生物技術之微生物鑑定、不同外部碳源添加及柔性計算原理,結合線上水質監
    測技術,建立動態多段進流提昇總氮去除率之技術與操作準則。穩態實驗結果顯示TNCU-III 程序無須迴流硝化液,並可節省鹼劑使用量,因此大幅降低操作費用,三段式、兩段式及不分流操作皆可滿足出流水總氮小於
    15mg/L、總磷2mg/L 之放流水標準。若欲達總氮濃度小於10mg/L、總磷濃度小於0.5mg/L 之出流水質,則所需總水力停留時間約為10 小時,其中厭氧段、好氧段與缺氧段之水力停留時間比約為1.5:5.5:3.0。TNCU-III 程序活性污泥菌相分析方面,不分流操作之活性污泥菌相包括
    Proteobacteria、CFB group、Chloroflexi 及Firmicutes 屬;而三段分流操作之活性污泥菌相包含Proteobacteria、CFB group、Chloroflexi 、Nitrospirae group 及
    Planctomycetales 屬。兩污泥樣本中皆存在硝化菌、脫硝菌、除磷菌、絲狀菌與化學需氧量降解菌,其中三段分流操作化學需氧量降解菌菌種多樣性高於單段操作,同時兼具除磷與脫硝能力的Acidovorax defluvii 菌種比例亦較高,約為15.2%。此外兩試程操作皆馴養出Eikelboom Type 1851 的絲狀菌,約佔不分流與三段分流操作總菌落數10%與12%。添加外部碳源提升總氮去除之批次實驗結果顯示,醋酸鈉之添加將導致磷的再釋出效應,且較大的C/N 比會造成較高的比釋磷量及PHAs 累積。添加甲醇時,微生物在前15 分鐘可進行脫硝反應,但其後反應槽混合液溶解性化學需氧量增加、變動,同時過濾液濁度增加,實驗終了時無亞硝酸氮的累積。若以醣類作為脫硝碳源,最終總硝酸氮去除率高於醋酸鈉、甲醇之添加約10~25%。因批次實驗(醋酸鈉除外)皆檢測不到反應液正磷酸鹽濃度,但活性污泥中PHAs 卻增加,故推論TNCU-III 程序中存在肝醣蓄積菌,增加脫硝所需之碳源劑量。
    動態實驗結果顯示因進流量變動發生污泥沖刷、營養鹽未能充分分解利用的現象以前四槽最為明顯,且十二個實驗試程厭氧段C/P 比約在20~70 之間變化,因C/P 變化過大,影響磷蓄積菌除磷之穩定性,故除磷效果較穩態為不理想。水質數據顯示以回流比=0.5、Q1:Q2:Q3=(0.7:0.2:0.1)試程之總氮、總磷去除效果最佳,出流水總氮、總磷濃度可低於7.6 與0.3mg/L。此外即時監測數據顯示厭氧段pH 值可作為基質酸化水解指標,而厭氧段ORP 及好氧第一段殘餘溶氧濃度變化可呈現污水生物處理之負荷變動趨勢,亦可作為動態控制的指標參數,此指
    標參數於TNCU-III 程序動態操作時發生1~2 小時的時間延遲現象,且出流水殘餘營養鹽濃度或是懸浮固體物濃度變化與進流水流量變動無明顯之一致性。此外本研究結合遺傳演算法與描述營養鹽降解之串聯式類神經網路以建立
    水質模擬模式,並進行動態操作之最佳化演算與模式敏感度分析,獲致TNCU-III程序動態操作不同時段之最佳分流比及污泥回流比,因水質實驗數據與模擬值間的高度相關性與低均方根誤差,且最佳試程操作之出流水水質總氮濃度較固定進流分流比、污泥回流比操作為佳,因此人工智慧技術可做為EBNR 程序水質模擬及最佳化控制之輔助工具。


    ABSTRACT
    Improvement of nutrient removal efficiency without recycling nitrified liquor was
    accomplished in this research. A step feed strategy was successfully incorporated into
    the TNCU-III process for enhancing the nitrogen removal without phosphorus
    elimination decline. The thesis investigated the nutrient removal characteristics,
    microbial population, and denitrification behavior of microorganisms by cultivating
    activated sludge under stable wastewater influent condition, molecular biotechnology,
    and external carbon source addition, respectively. Moreover, microbial kinetic
    parameters obtained from continuous pilot-plant operation were used to optimize each
    reactive volume of TNCU-III process. Under dynamic loading, real-time effluent
    water quality data acquired from monitoring instruments and soft-computing
    technology in terms of artificial neural networks (ANNs) and genetic algorithm (GA)
    were combined to minimize effluent nutrients concentration.
    In the steady-state experiments, non-, two or three step-feeding strategy resulted in
    excellent treated water quality, and effluent total nitrogen (T-N) and phosphorus (T-P)
    concentration were less than 15 mg/L and 2 mg/L, respectively. Results also showed
    the potential of saving energy or alkaline consumption in TNCU-III process. When
    three step-feeding strategy and enough hydraulic retention time (10hrs) were
    implemented, the better effluent water quality was obtained (T-N<10mg/L,
    T-P<0.5mg/L); meanwhile the ratio of anaerobic-oxic-anoxic retention time was
    1.5:5.5:3.0.
    In the microbial population identification, bacteria of Proteobacteria group, CFB
    group, Chloroflexi group, and Firmicutes group were present in non step-feeding
    operation. Additionally, bacteria of Proteobacteria group, CFB group, Chloroflexi
    group, Nitrospirae group, and Planctomycetales existed in three step-feeding sludge
    sample. Both two activated sludge samples involved specific species for nutrient
    removal, carbon utilization, and filamentous bacteria. The diversity of microbial
    population response for carbon uptake in three step-feeding was higher than that in
    non step-feeding mode. Filamentous bacteria (Eikelboom Type 1851) existed in both
    two sludge samples, and the proportion were about 10 and 12%.
    According to external carbon source addition experiments, sodium acetate addition
    resulted in phosphate re-release problem. If methanol was used to be the electron
    donor, microorganisms needed more adaptive time to utilize methanol; meanwhile
    resulted in carbon breakthrough. When glucose was fed, the final nitrate (NO3-N)
    removal efficiency was higher than former carbon sources about 10~25%. Moreover,
    the final PHAs contained within the biomass were more than original level and no
    PO4-P re-release was observed when methanol and glucose addition, glycogen
    accumulating organisms (GAOs) might exist in TNCU-III process and increased
    carbon dosage for NO3-N removal.
    Furthermore, wash-out effect of mixed liquor suspended solid and nutrients were
    occurred in the first four reactive zones under dynamic loading. Because of the
    obvious variation of C/P ratio (C/P=20~70) in anaerobic zone, the activity of
    polyphosphate accumulating organisms (PAOs) decreased. When TNCU-III process
    was operated at sludge recycle ratio=0.5 and Q1:Q2:Q3=(0.7:0.2:0.1), effluent T-N and
    T-P concentration were less than 7.6mg/L and 0.3mg/L, respectively. Additionally,
    real-time monitoring data demonstrated pH and reduction potential in anaerobic zones
    and residual dissolved oxygen (DO) concentration in the first aerobic zone well
    described the variation of organic loading. All the aforementioned parameters could
    be considered as the indicators in TNCU-III control strategy-making procedure.
    Moreover, artificial intelligence (AI) technique by means of serial ANNs describing
    metabolic behavior of microorganisms and GA were successfully integrated into the
    modeling system. The modeling system simulate the dynamic characteristics of
    nutrients removal and minimized effluent NO3-N concentration. Due to low root mean
    squared of error and high correlation coefficient between simulated and experimental
    data, AI technology offered an alternative approach to simulate and optimized nutrient
    removal of an EBNR system.

    V 目錄 中文摘要……………………………………………………………… I 英文摘要……………………………………………………………… III 目錄…………………………………………………………………. V 圖目錄…………………………………………………………………. VIII 表目錄…………………………………………………………………. XI 第一章緒論………………………………………………………………… 1 1.1 研究緣起……………………………………………………………. 1 1.2 研究目的與內容……………………………………………………. 3 1.3 研究架構……………………………………………………………. 4 第二章文獻回顧…………………………………………………………... 5 2.1 生物營養鹽氮磷代謝機制…………………………………………. 5 2.1.1 生物去氮………………………………………………. 6 2.1.1.1 生物去氮機制及影響因子……………………….. 6 2.1.1.2 生物去氮程序…………………………………….. 11 2.1.2 生物除磷………………………………………………. 13 2.1.2.1 生物除磷原理及影響因子……………………….. 13 2.1.2.2 生物除磷程序…………………………………….. 16 2.1.3 氮磷併同去除程序之發展……………………………. 17 2.2 外部碳源添加對生物營養鹽去除程序之影響……………………. 21 2.3 分子生物技術於活性污泥微生物鑑定之原理……………………. 27 2.3.1 污泥DNA 萃取及PCR 反應…………………………. 27 2.3.2 基因選殖………………………………………………. 28 2.3.3 族群指紋譜建立………………………………………. 29 2.3.4 定序及資料庫比對……………………………………. 30 2.4 強化生物營養鹽去除(EBNR)程序之動態控制策略擬定………... 32 2.4.1 動態控制之目標與監測項目…………………………. 32 2.4.2 控制參數選定之依據與擾動因子……………………. 36 2.4.3 前餽式與後餽式控制原理及其應用…………………. 41 2.5 柔性計算原理應用於活性污泥程序之最佳化操作………………. 45 2.5.1 模糊理論應用於活性污泥法操作策略擬定…………. 46 2.5.2 類神經網路原理及其相關應用………………………. 48 2.5.3 遺傳演算法及其最佳化求解…………………………. 54 VI 第三章實驗材料與方法…………………………………………………. 58 3.1 反應槽配置及馴養基質組成………………………………………. 58 3.1.1 連續式穩、動態進流之模廠反應槽配置……………. 58 3.1.2 連續式穩、動態進流之馴養基質組成………………. 62 3.1.3 連續式動態進流之監測儀器配置……………………. 64 3.1.4 批次反應槽配置………………………………………. 68 3.2 實驗設計……………………………………………………………. 69 3.3 實驗方法與分析設備………………………………………………. 70 3.3.1 水質檢驗方法與分析設備……………………………. 70 3.3.2 分子生物實驗方法與分析設備………………………. 70 3.4 柔性計算原理及其相關參數設定…………………………………. 72 3.4.1 類神經網路參數設定…………………………………. 72 3.4.2 遺傳演算法參數設定…………………………………. 73 第四章TNCU-III 程序於穩態進流之實驗結果…………………….. 74 4.1 TNCU-III 程序於不同分流比操作之實驗結果……………………. 74 4.1.1 實驗設計………………………………………………. 74 4.1.2 TNCU-III 程序之COD 去除特性…………………….. 74 4.1.3 TNCU-III 程序之釋磷、攝磷特性……………………. 75 4.1.4 TNCU-III 程序之硝化、脫硝特性……………………. 79 4.2 TNCU-III 程序之活性污泥菌相分析………………………………. 82 4.2.1 實驗設計………………………………………………. 82 4.2.2 單段進流操作之污泥菌相……………………………. 83 4.2.3 三段分流操作之污泥菌相……………………………. 89 4.2.4 TNCU-III 程序活性污泥菌相之比較………………… 95 4.3 TNCU-III 程序添加外部碳源提升總氮去除之實驗結果…………. 100 4.3.1 實驗設計………………………………………………. 100 4.3.2 添加醋酸鈉之實驗結果………………………………. 102 4.3.3 添加甲醇之實驗結果…………………………………. 104 4.3.4 添加葡萄醣之實驗結果………………………………. 105 4.3.5 添加蔗醣之實驗結果…………………………………. 105 4.3.6 空白實驗………………………………………………. 106 4.3.7 添加不同外部碳源之比較……………………………. 106 4.4 TNCU-III 程序之反應槽體積推估…………………………………. 110 4.5 TNCU-III 程序於穩態進流操作之結論……………………………. 116 VII 第五章TNCU-III 程序於動態進流之實驗結果…………………….. 121 5.1 TNCU-III 程序於動態不同分流比、回流比之實驗結果………….. 121 5.1.1 實驗設計………………………………………………. 121 5.1.2 單段進流操作之營養鹽去除特性……………………. 122 5.1.3 兩段分流操作之營養鹽去除特性……………………. 124 5.1.4 三段分流操作之營養鹽去除特性……………………. 130 5.1.5 不同實驗試程之營養鹽去除特性比較………………. 136 5.2 TNCU-III 程序於動態操作之即時監測數據分析…………………. 140 5.2.1 實驗設計………………………………………………. 140 5.2.2 單段進流操作之即時監測數據分析…………………. 140 5.2.3 兩段分流操作之即時監測數據分析…………………. 142 5.2.4 三段分流操作之即時監測數據分析…………………. 144 5.2.5 TNCU-III 程序動態控制之指標參數………………… 145 5.3 TNCU-III 程序於動態進流操作之結論……………………………. 148 第六章應用柔性計算原理於TNCU-III 程序之最佳化操作…… 150 6.1 類神經網路於TNCU-III 程序動態操作之水質模擬………………. 150 6.1.1 類神經網路訓練、測試數據來源及前處理…………. 150 6.1.2 類神經網路架構之選定及預測試結果………………. 151 6.1.3 類神經網路之合理性評估與敏感度分析結果………. 154 6.1.4 類神經網路於兩段分流動態操作之水質模擬………. 156 6.2 類神經網路結合遺傳演算法於TNCU-III 程序動態操作最佳化... 162 6.2.1 最佳化模式之建立……………………………………. 162 6.2.2 動態進流最佳試程操作結果…………………………. 169 6.3 TNCU-III 程序動態進流最佳化操作之結論………………………. 176 第七章結論與建議……………………………………………………….. 178 7.1 結論…………………………………………………………………. 178 7.2 建議…………………………………………………………………. 184 參考文獻………………………………………………………………………... 185 附錄………………………………………………………………………............. 195 附錄A 水質監測儀器規格與校正曲線………….............…………... 195 附錄B PHAs 分析方法………………………………………............... 200 附錄C 分子生物實驗方法………………………………..................... 201 附錄D 遺傳演算最佳化模式預測試結果…………………………… 207

    185
    參考文獻
    1. Amman R. I., Ludwig W., and Schleifer K. H. (1995) Phylogenetic identification
    and in situ detection of individual microbial cells without cultivation. Microbial
    2. APHA, AWWA, and WPCF (1995) Standard Methods for the Examination of
    Water and Wastewater, 19th Edition, American Public Health Association,
    3. ASCE and WEF, (1992) Design of Municipal Wastewater Treatment plants. ASCE
    Manual and Report on Engineering.
    4. Baker P. S. and Dold P. L. (1996) Denitrification behaviour in biological excess
    phosphorus removal activated sludge systems. Wat. Res., 30(4), 769-780.
    5. Barlindhaug J. and Degaard H. (1996) Thermal hydrolysate as a carbon source for
    denitrification. Wat. Sci. Technol., 33(12), 99-108.
    6. Bond P.L., Hugenholtz P., Keller J., and Blackall L.L., (1995) Bacterial
    community structures of phosphate-removing and non-phosphate-removing
    activated sludge from sequencing batch reactors. Appl. Environ. Microbiol.,
    5), 1910-1916.
    7. Burrell P. C., Keller J., and Blackall L. L. (1998) Microbiology of a
    nitrite-oxidizing bioreactor. Appl. Environ. Microbiol,. 64(5), 1878-1883.
    8. Capodaglio A. G., Jones H. V., Novotny V., and Feng X. (1991) Sludge bulking
    analysis and forecasting application of system identification and artificial
    neural computing technologies. Wat. Res., 25, 1217-1224.
    9. Cech J. S. and Hartman P. (1993) Competition between polyphosphate and
    polysaccharide accumulating bacteria in enhanced biological phosphate
    removal system. Wat. Res., 27(7), 1219-1225.
    10. Charef A., Ghauch A., Baussand P., and Martin-Bouyer M. (2000) Water quality
    monitoring using a smart sensing system. Measurement, 28, 219-224.
    186
    11. Charpentier J., Godart H., Martin G., and Mogno Y. (1989) Oxidation reduction
    potential (ORP) regulation as a way to optimize aeration and C, N and P
    removal: experience basis and various full-scale example. Wat. Sci. Technol.,
    21, 1209-1223.
    12. Choi D. J. and Park H. (2001) A hybrid artificial neural network as a software
    sensor for optimal control of a wastewater treatment process. Wat. Res. 35(16),
    3959-3967.
    13. Chou Y. J., Kuo W. L., Huang H. L., and Ouyang C. F.(2001) The characteristic of
    nutrient removal in the multiple stages enhanced biological nutrient removal
    process by using step-feed approach. 1st IWA Asia-Pacific Regional
    Conference, 531-536, Fukuoka, Japan.
    14. Chou Y. J., Ouyang C. F., Kuo W. L., and Huang H. L. (2003) Denitrifying
    characteristics of the multiple stages enhanced biological nutrient removal
    process with external carbon sources. Journal of Environmental Science and
    Health Part-A. (Accepted)
    15. Chou Y. J., Ouyang C. F., and Kuo W. L. (2003) Feedforward artificial neural
    networks for nutrients removal simulation in multiple stages enhanced
    biological nutrient removal process. Journal of the Chinese Institute of
    Engineers. (Accepted)
    16. Chuang S. H., Ouyang C. F., Yuang H. C., and You S. J. (1998) Phosphorus and
    polyhydroxyalkanoates variation in a combined process with activated sludge
    and biofilm. Wat. Sci. Technol., 37(4-5), 593-597.
    17. Comeau Y. Hall K. J., and Oldham W. K. (1988) Denitrification of
    poly-β-hydroxybutyrate and poly-β-hydroxyvalerate in activate sludge by
    gas-liquid chromatography. App. Environ. Microbiol., 54, 2325-2327.
    18. Côté M., Grandjean B. P. A., Lessard P., and Thibault J. (1995) Dynamic
    modeling of the activated sludge process: improving prediction using neural
    networks. Wat. Res. 29(4), 995-1004.
    187
    19. Dabert P., Sialve B., Delgenes J.P., Moletta R., and Godon J.J., (2001)
    Characterization of the microbial 16S rDNA diversity of an aerobic
    phosphorus-removal ecosystem and monitoring of its transition to nitrate
    respiration. Appl. Microbiol. Biotechnol., 55(4), 500-509.
    20. Deinema M. H., Loosdrecht M. van, and Scholten A. (1985) Some physiological
    characteristics of Acinetobacter spp. Accumulating large amount of phosphate.
    Wat. Sci. Technol,. 17, 119-125.
    21. Dedysh S. N., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D.,
    Liesack W., and Tiedje J. M. (2002) Methylocapsa acidiphila gen. nov., sp. nov.,
    a novel methane-oxidizing and nitrogen-fixing acidophilic bacterium from
    Sphagnum bog. Int. J. Syst. Evol. Microbiol., 52(1), 251-261.
    22. Du Y. G., Tyagi R. D., and Bhamidimarri R. (1999) Use of fuzzy neural-net model
    for rule generation of activated sludge process. Process Biochemistry, 35,
    77-83.
    23. Frick B. R. and Richard Y. (1985) Experience with biological denitrification in a
    full scale drinking water treatment. Vom. Wasser, 64, 145-154.
    24. Fu C. and Poch M. (1995) System identification and real-time pattern recognition
    by neural networks for activated sludge process. Environmental Intemational,
    21(1), 57-69.
    25. Fuente M. J. and Vega P. (1999) Neural networks applied to fault detection of a
    biotechnological process. Engineering Application of Artificial Intelligence, 12,
    569-584.
    26. Fujii S. (1996) Theoretical analysis on nitrogen removal of the step-feed
    anoxic-oxic activated sludge process and its application for the optimal
    operation. Wat. Sci. Technol., 34(1-2), 459-466.
    27. Glass C. and Silverstein J. (1998) Denitrification kinetics of high nitrate
    concentration water: pH effect on inhibition and nitrite accumulation. Wat. Res.,
    32(3), 831-839.
    188
    28. Görgün E., Artan N., Orhon D. and Sözen S. (1996) Evaluation of nitrogen
    removal by step feeding in large treatment plants. Wat. Sci. Technol., 34(1-2),
    253-260.
    29. Gontarski C. A., Rodrigues P. R., Mori M., and Prenem L. F. (2000) Simulation of
    an industrial wastewater treatment plant using artificial neural networks.
    Computers and Chemical Engineering, 24, 1719-1723.
    30. Gumaelius L., Magnusson G., Pettersson B. and Dalhammar G. (2001)
    Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated
    from activated sludge. Int. J. Syst. Evol. Microbiol., 51(3), 999-1006
    31. Häck M. and Köhne M. (1996) Estimation of wastewater parameters using neural
    networks. Wat. Sci. Technol. 33(1), 101-115.
    32. Hajda P., Novotny V., Feng X., and Yang R. (1998) Simple feedback logic, genetic
    algorithms and artificial neural networks for real-time control of a collection
    system. Wat. Sci. Technol. 38(3), 187-195.
    33. Hallin S., Rothman M., and Pell M. (1996) Adaptation of denitrifying bacteria to
    acetate and methanol in activated sludge. Wat. Res.,. 30(6), 1445-1450.
    34. Halling-Sørensen B. and Jørgensen S. E. (1993) The Removal of Nitrogen
    Compounds from wastewater. Elsevier, Denmark, 55-151.
    35. Hamoda M. F. Al-Ghusain I. A. and Hassan A. H. (1999) Integrated wastewater
    treatment plant performance evaluation using artificial neural networks. Wat.
    Sci. Technol. 40(7), 55-65.
    36. Hashsham S. A., Marsh T. L., Dollhopf S. L., Fernandez A. S., Dazzo F. B.,
    Hickey R. F., Criddle C. S., and Tiedje J. M. (2001) Advances in Water and
    Wastewater Treatment Technology-molecular technology, nutrient removal,
    sludge reduction, and environmental health. Elsevier Science, 67-78.
    37. Henze M., Harremoës P., and Roed Jensen O. (1977) Combined sludge
    denitrification of sewage utilizing internal carbon source. Prog. Wat. Tech., 8,
    589-599.
    189
    38. Henze M., Gujer W., Mino T., Matsuo T., Wentzel M.C., Marais G.v.R., and van
    Loosdrecht M.C.M. (1999) Activated sludge model No.2d. Wat. Sci. Technol.,
    39(1), 165-182.
    39. Her J. J. and Huang J. S. (1995) Influences of carbon source and C/N ratio on
    nitrate/nitrite denitrification and carbon breakthrough. Bioresource Technol., 54,
    45-51.
    40. Hiraishi A., Masamune K., and Kitamura H. (1989) Characterization of the
    bacterial population structure in an anaerobic-aerobic activated sludge system
    on the basis of respiratory quinine profiles. Appl. Environ. Microbiol,. 55(4),
    897-901.
    41. Holt G. J., Krieg R. N., Sneath H. P., Staley T. J., and Williams T. S. (1994)
    Bergey’s manual of determinative bacteriology. 9th edition, Williams & Wilkins,
    Maryland.
    42. Hussain M. A. (1999) Review of the applications of neural networks in chemical
    process control-simulation and online implementation. Artificial Intelligence in
    Engineering, 13, 55-68.
    43. Isaacs S., Henze M., Søeberg H., and Kümmel M. (1994) External carbon source
    addition as a means to control an activated sludge nutrient removal process.
    Wat. Res., 28(3), 511-520.
    44. Jenkins D., Richard M. G., and Daigger G. T. (1993) Manual on the causes and
    control of activated sludge bulking and forming. 2nd edition, Lewis Publishers.
    45. Kim S., Lee H., Kim J., Kim C., Ko J., Woo H., and Kim S. (2002) Genetic
    algorithms for the application of activated sludge model No.1. Wat. Sci.
    Technol., 45(4-5), 405-411.
    46. Kurt M., Dunn I. J., and Bourne J. R. (1987) Biological denitrification water using
    autotrophic organisms with hydrogen in a fluidized-bed biofilm reactor.
    Biotechnology Bioengineering, 29, 493-501.
    47. Larachi F. (2001) Neural network kinetic prediction of coke burn-off on spent
    190
    MnO2/CeO2 wet oxidation catalysts. Applied Catalysis, 30, 141-150.
    48. Lee D. S. and Park J. M. (1999) Neural network modeling for on-line estimation
    of nutrient dynamics in a sequentially-operated batch reactor,” Journal of
    Biotechnology, 75, 229-239.
    49. Lee N. M. and Welander T. (1996) The effect of different carbon sources on
    respiratory denitrification in biological wastewater treatment. Journal of
    Fermentation and Bioengineering, 82(3), 227-285.
    50. Li L., Kato C., and Horikoshi K. (1999) Microbial diversity in sediments collected
    from the deepest cold-seep Area. Mar. Biotechnol., 1(4), 391-400.
    51. Liu W. T., Mino T., Nakamura K. and Matsuo T. (1996) Glycogen accumulating
    population and its anaerobic substrate uptake in anaerobic-aerobic activated
    sludge without biological phosphorus removal. Wat. Res., 30(1), 75-82.
    52. Liu E. T., Marsh T. L., Cheng H., and Forney L. J. (1997) Characterization of
    microbial diversity by determining terminal restriction fragment length
    polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol,.
    63(11), 4516-4522.
    53. Liu W. T., Wu J. H., Chan O. C., Cheng S. S., Tseng I. C., and Fang H. P. (2001)
    Comparison of microbial communities in anaerobic granulated sludge reactors
    treating benzoate, methyl benzoate and terephthalate. Advances in Water and
    Wastewater Treatment Technology-molecular technology, nutrient removal,
    sludge reduction, and environmental health. Elsevier Science, 79-88.
    54. Liu W.T., Nielsen A.T., Wu J.H., Tsai C.S., Matsuo Y., and Molin S. (2001) In situ
    identification of polyphosphate and polyhydroxyalkanoate-accumulating traits
    for microbial populations in a biological phosphorus removal process. Environ.
    Microbiol., 3(2), 110-122.
    55. Manz W., Wagner M., Amann R., and Schleifer K. H. (1994) In situ
    characterization of the microbial consortia active in two wastewater treatment
    plants. Wat. Res., 28(8), 1715-1723.
    191
    56. Marsili-Libell S. and Giunti L. (2001) Fuzzy predictive control for nitrogen
    removal in biological wastewater treatment. Instrumentation, Control and
    Automation 2001(ICA 2001), IWA publishing, 37-44.
    57. Matsuo Y. (1994) Effect of the anaerobic SRT on enhanced biological phosphorus
    removal. Wat. Sci. Technol., 28, 127-136.
    58. Matsuo Y. and Kurisu F. (2001) Observation and model analysis for the bacterial
    community structure of activated sludge. Advances in Water and Wastewater
    Treatment Technology-molecular technology, nutrient removal, sludge
    reduction, and environmental health. Elsevier Science, 3-12.
    59. Metcalf and Eddy (1991) Wastewater Engineering-treatment, disposal, and reuse.
    McGraw-Hill, Inc.
    60. McCarty P. J., Beck and Amant (1969) Biological denitrification of waste water
    by addition of organic materials. 24th Ind. Waste Conf., Purdue University,
    1271-1285.
    61. Mino T., Satoh H. and Matsuo T. (1994) Metabolisms of different bacterial
    populations in enhanced biological phosphate removal process. Wat. Sci.
    Technol., 29(7), 67-70.
    62. Mino T. (1998) Handout of Advanced Wastewater Biological Treatment
    Engineering., National Central University, Taiwan.
    63. Mino T., Satoh H., Onuki M., Akiyama T., Nomura T., and Matsuo T. (2001)
    Strategic approach for characterization of bacterial community in enhanced
    biological phosphate (EBNR) process. Advances in Water and Wastewater
    Treatment Technology-molecular technology, nutrient removal, sludge
    reduction, and environmental health. Elsevier Science, 21-30.
    64. Mohseni-Bandpi A. and Elliott D. J. (1998) Groundwater denitrification with
    alternative carbon sources. Wat. Sci. Technol., 38(6), 237-243.
    65. Mohseni-Bandpi A., Elliott D. J., and Momeny-Mazdeh A. (1999) Denitrification
    of groundwater using acetate acid as a carbon source. Wat. Res., 40(2), 53-59.
    192
    66. Monteith H. D. (1980) Industrial waste carbon source for biological denitrification.
    Prog. Wat. Tech., 12, 127-141.
    67. Murray R. G. E. (chairman) et al. (1984) Bergey’s manual of systematic
    bacteriology. Williams & Wilkins.
    68. Myers R. M., Fischer S. G., Lerman L. S., and Maniatis (1985) Near all single
    base substitutions in DNA fragments joined to a GC clamp can be detected by
    denaturing gradient gel electrophoresis. Nucleic Acid Res., 13(9), 3131-3145.
    69. Nasu M., Yamaguchi N., and Tani K. (2001) Microbial community structure and
    their activity in aquatic environment. Advances in Water and Wastewater
    Treatment Technology-molecular technology, nutrient removal, sludge
    reduction, and environmental health. Elsevier Science, 31-40.
    70. Nielsen T. A., Liu W. T., Filipe C., Grady L., Molin S., and Stahl A. D. (1999)
    Identification of a novel group of bacteria in sludge from a deteriorated
    biological phosphorus removal reactor. Appl. Environ. Microbial., 65(3),
    1251-1258
    71. Olsson G. and Newell B. (1999) Wastewater Treatment Systems: Modeling,
    Diagnosis and Control. IWA Publishing.
    72. Oh J. and Silverstein J. (1999) Oxygen inhibition of activated sludge
    denitrification. Wat. Res., 33(8), 1925-1937.
    73. Ouyang C. F., Chou Y. J., Pai T. Y., Chang H. Y., and Liu W. T.(2001)
    Optimization of enhanced biological wastewater treatment processes using a
    step-feed approach. Advances in Water and Wastewater Treatment
    Technology-molecular technology, nutrient removal, sludge reduction, and
    environmental health. Elsevier Science, 295-304.
    74. Pirsing A., Wiesmann U., Kelterbach G., Röck H. Eichner B. Szukal S., and
    Schulze G. (1996) On-line monitoring and modeling based process control of
    high rate nitrification-lab scale experimental results. Bioprocess Engineering,
    15, 181-188.
    193
    75. Rauch W. and Harremoes P. (1999) Genetic algorithms in real time control applied
    to minimize transient pollution from urban wastewater system. Wat. Res., 33(5),
    1265-1277.
    76. Richard T. (1980) Denitrification of water for human consumption. Prog. Wat.
    Tech., 12, 173-191.
    77. Rittmann B. E. and McCarty P. L. (2001) Environmental Biotechnology Principles
    and Applications. McGraw-Hill, New York, United State, 470-524.
    78. Reddy M. (1998) Biological and Chemical System for Nutrient Removal. Water
    Environment Federation, Alexandria, United State, 101-189.
    79. Schulze R., Spring S., Amann R., Huber I., Ludwig W., Schleifer K. H., and
    Kampfer P. (1999) Genotypic diversity of Acidovorax strains isolated from
    activated sludge and description of Acidovorax defluvii sp. Nov. Syst. Appl.
    Microbiol., 22(2), 205-214.
    80. Snaidr J., Amann R., Huber I., Ludwig W., Schleifer K. H. (1997) Phylogenetic
    analysis and in situ identification of bacteria in activated sludge. Applied and
    Environmental Microbiology. 63(7), 2884-2896.
    81. Stensel, Loehr, and Lawrence (1973) Biological kinetics of suspended growth
    denitrification. WPCF, 45, 399-410.
    82. Surmacz-Górska J., Cichon A., and Miksch K. (1997) Nitrogen removal from
    wastewater with high ammonia nitrogen concentration via shorter nitrification
    and denitrification. Wat. Sci. Technol., 36(10), 73-78.
    83. Syu M. J. and Chen B. C. (1998) Back-propagation neural network adaptive
    control of a continuous wastewater treatment process. Ind. Eng. Chem. Res., 37,
    3625-3630.
    84. Tiedje J. Fernandez A., Hashsham S., Dollhopf S., Dazzo F., Hickey R., and
    Criddle C. (2001) Stability, persistence and resilience in anaerobic reactor: a
    community unveiled. Advances in Water and Wastewater Treatment
    Technology-molecular technology, nutrient removal, sludge reduction, and
    194
    environmental health. Elsevier Science, 13-20.
    85. Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., and Schleifer K.
    H. (1994) Development of an rRNA-targeted oligonucleotide probe specific for
    the genus Acinetobacter and its application for in situ monitoring in activated
    sludge. Appl. Environ. Microbiol., 60(3), 792-800.
    86. Wentzel M. C., Lotter L. H., Ekama G. A., Loewenthal R. E., and Marais G. R.
    (1991) Evaluation of biochemical models for biological excess phosphorus
    removal. Wat. Sci. Technol., 23, 567-576.
    87. Yagi S. and Shiba S. (1999) Application of genetic algorithms and fuzzy control to
    a combined sewer pumping station. Wat. Sci. Technol., 39(9), 217-224.
    88. Yu R. F., Liaw S. L., Chang C. N., and Cheng W. Y. (1998) Appling real-time
    control to enhance the performance of nitrogen removal in the continuous-flow
    SBR system. Wat. Sci. Technol., 38(3), 271-280.
    89. Zhao H., Isaacs S. H., Søeberg H., and Kümmel M. (1995) An analysis of nitrogen
    removal and control strategies in an alternating activated sludge process. Wat.
    Res., 29(2), 535-544.
    90. Zhu J., Zurcher J., Rao M., and Meng M. Q-H. (1998) An on-line wastewater
    quality prediction system based on time-delay neural network. Engineering
    Application of Artificial Intelligence. 11, 747-758.
    91. 歐陽嶠暉,下水道工程學,長松出版社,台北(2000)。
    92. 蔡勇斌(1993)活性污泥系統自動化與最佳化動態操作控制之研究,博士論
    文,國立中央大學環境工程研究所。
    93. 張謝淵(2000)AOAO 污水處理程序去除營養鹽之特性研究,博士論文,國立
    中央大學環境工程研究所。
    94. 游勝傑(2001)併同生物膜與活性污泥程序之硝化及脫硝攝磷特性研究,博士
    論文,國立中央大學環境工程研究所。

    QR CODE
    :::