| 研究生: |
連映琦 Ying-chi Lien |
|---|---|
| 論文名稱: |
用於生理訊號擷取系統之自動化類比設計平台 Automatic Analog Synthesis Platform for Bio-signal Acquisition System |
| 指導教授: |
劉建男
Chien-Nan Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 設計自動化 、電路合成 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今積體電路應用層面越來越廣泛,使得電路設計複雜度和需求日漸增高,所要考慮的設計條件也跟著變多。在健康照護的應用中,生理訊號擷取是偵測疾病相當重要的一環,然而,生理訊號相當微弱,很容易受到雜訊影響導致難以判讀,如何去降低雜訊對原始訊號的干擾,對生醫系統設計來說是一門重要的課題。本論文提出一套考量雜訊效應的類比電路系統自動化設計帄台,在電路尺寸調整流程中,加入相關雜訊的計算,並使用雜訊指數作評估,盡量降低電路受到雜訊的影響,最後可經由操作客製化的圖形介面,快速得到相對應的電路設計與電路佈局。整套自動化 類比設計平台在LINUX上實現,在線性規劃(linear programming)的部分用CPLEX來找尋最佳解,而在自動產生電路佈局上則是以C/C++及Tcl/Tk程式語言實現,並能在Laker環境下自動化完成佈局的過程。由模擬結果及晶片量測的數據觀察可知,本工具自動合成的運算放大器可成功應用在生理訊號擷取系統上,在加入雜訊考量後,整體的雜訊也確實縮小了。
The integrated circuits of nowadays have more and more applications. More functionality increases the complexity of circuit design, which also increases the conditions that have to be considered in the design process. In health care application, the bio-signal acquisition system is important to diagnose the diseases. However, because the bio-signals are often very weak, they can be influenced by noise easily
and become hard to distinguish. How to reduce the noise impacts on bio-signals is important in bio-system design. In this thesis, an automatic analog synthesis platform is presented to generate the required system from specification to layout with noise consideration. Noise Factor (NF) is introduced in the proposed circuit sizing flow to evaluate the noise impact and guide the optimization toward noise reduction. Finally,with a friendly Graphical User Interface (GUI), the required design and its corresponding layout can be generated in seconds. The whole synthesis platform has
been implemented in Linux with the optimization tool CPLEX, incorporating with an automatic layout generation platform implemented with C/C++ and Tcl/Tk on Laker. According to the simulation and chip measurement results, the automatically synthesized OPA can be used in the bio-signal acquisition system successfully. With noise consideration, the overall noise is also greatly reduced in noise simulation.
[1]R. A. Rutenbar, G. G. E. Gielen, and J. Roychowdhury, “Hierarchical Modeling, Optimization, and Synthesis for System-Level Analog and RF Designs,” Proc. of the IEEE, vol. 95, no. 3, pp. 640-669, Mar. 2007.
[2]F. El-Turky and E.E. Perry, “BLADES: An Artificial Intelligence Approach to Analog Circuit Design,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 8, no. 6, pp. 680-692, Jun. 1989.
[3]J. Mahattanakul and J. Chutichatuporn, “Design Procedure for Two-Stage CMOS Op-Amp with Flexible Noise-Power Balancing Scheme,” IEEE Trans. on Circuits and Systems-I: Regular Papers, vol. 52, no. 8, pp. 1508-1514, Aug. 2005.
[4]Shuenn-Yuh Lee, and Chih-Jen Cheng, “Systematic Design and Modeling of a OTA-C Filter for Portable ECG Detection,” IEEE Trans. on Biomedical Circuits and Systems, vol. 3, no. 1, pp. 53-64, Feb. 2009.
[5]Y.-C. Liao, Y.-L. Chen, X.-T. Cai, C.-N. Jimmy Liu, and T.-C. Chen, “LASER: layout-aware analog synthesis environment on laker,” Proc. ACM International Conference on Great Lakes Symposium on VLSI, pp. 107-112, 2013.
[6] C.-W. Lin, P.-D. Sue, Y.-T. Shyu and S.-J. Chang, “A Bias-Driven Approach for Automated Design of Operational Amplifiers,” Proc. Int’l Symp. on VLSI Design, Automation, and Test, pp. 119-121, 2009.
[7] M. Ranjan, W. Verhaegen, A. Agarwal, H. Sampath, R. Vemuri, G. Gielen, “Fast, Layout-Inclusive Analog Circuit Synthesis using Pre-Compiled Parasitic-Aware Symbolic Performance Models,” Proc. Design, Automation and Test in Europe, pp. 604-609, 2004.
[8]G. Zhang, A. Dengi, R. A. Rohrer, R. A. Rutenbar, L. R. Carley, “A Synthesis Flow Toward Fast Parasitic Closure For Radio-Frequency Integrated Circuits,” Proc. Design Automation Conference, pp. 155–158, 2004.
[9] R. Castro-López, O. Guerra, E. Roca, and F. V. Fernández, “An Integrated Layout-Synthesis Approach for Analog ICs,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 7, pp. 1179-1189, Jul. 2008.
[10] H. Habal and H. Graeb, “Constraint-Based Layout-Driven Sizing of Analog Circuits,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 8, pp. 1089-1102, Aug. 2011.
[11]K. Lampaert, D. Garrod, R. Rutenbar, and L. Carley, “Koan/Anagram II: New Tools for Device-Level Analog Placement and Routing,” IEEE J. Solid-State Circuits, vol. 26, no. 3, pp. 330-342, Mar. 1991.
[12]L. Zhang, U. Kleine and Y. Jiang, “An automated design tool for analog layouts,” IEEE Trans. on Very Large Scale Integration System, vol.14, no. 8, pp. 881-894, Aug. 2006.
[13] E. Yilmaz, Günhan Dündar “Analog Layout Generator for CMOS Circuits,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 8, pp. 32-45, Jan. 2009.
[14]A. Agarwal and R. Vemuri, “Layout-Aware RF Circuit Synthesis Driven by Worst Case Parasitic Corners,” IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD), 2005.
[15]L. Zhang, N. Jangkrajarng, S. Bhattacharya, and C.-J. Richard Shi, “Parasitic-Aware Optimization and Retargeting of Analog Layouts: A Symbolic-Template Approach,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 5, pp. 791- 802, May 2008.
[16]K. Lampaert, G. Gielen, and W. Sansen, “Analog Layout Generation for Performance and Manufacturability,” Boston, MA: Kluwer, 1999.
[17]T. Sen, “Yet another simulation based sensitivity analysis tool for analog layout generation,” M.S. thesis, Bogaziçi Ünivertisesi, Istanbul, Turkey, 2007.
[18]Y.-F. Cheng, L.-Y. Chan, Y.-L. Chen, Y.-C. Liao, and C.-N. Jimmy Liu, “A Bias-Driven Approach to Improve the Efficiency of Automatic Design Optimization for CMOS OP-Amps,” Proc. Asia Symposium on Quality Electronic Design, pp. 59-63, 2012.
[19]W. Gao and R. Hornsey, “A Power Optimization Method for CMOS Op-Amps Using Sub-Space Based Geometric Programming,” Proc. Design, Automation and Test in Europe, pp. 508-513, 2010.
[20]Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Higher Education, 2001.
[21]R.A Rutenbar., “Emerging Tools for Analog & Mixed-Signal: The Role of Synthesis and Analog Intellectual Property,” DATE master course, 2003.
[22]ILOG CPLEXTM from IBM, http://www.ilog.com/products/cplex/
[23]LakerTM from Synopsys, http://www. synopsys.com
[24]許家綾, “具備內建樣板之鎖相迴路佈局自動化軟體,” 國立中央大學電機工程研究所碩士論文, July 2011.
[25]吳宛蓉, “提升可撓式薄膜電晶體之類比電路可靠度的快速自動化設計方法,” 國立中央大學電機工程研究所碩士論文, July 2012.
[26]廖于晴, “考慮佈局效應的類比設計自動化工具,” 國立中央大學電機工程研究所碩士論文, July 2013.
[27]黃振洋, “應用於無線區域網路與寬頻帶系統之低雜訊放大器設計,” 國立中央大學電機工程研究所碩士論文, June 2005.
[28]HSPICE® User Guide, Release F-2011.09