跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔣明勳
Ming-Xun Jiang
論文名稱: 矽基低維度熱電量測平台之製備與研究
Batch fabrication and thermoelectrical Measurement of Si-based thermoelectric device in low dimension
指導教授: 李勝偉
Sheng-Wei Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: 矽奈米緞帶結構熱電量測平台半導體製程量子點
外文關鍵詞: silicon nanoribbon structure, thermoelectric measurement platform, semiconductor process, quantum dots
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從工業革命後,人類社會大量使用石化燃料,除了造成許多汙染外,亦會產生太多無法直接利用的廢熱。熱電材料為一種熱能和電能彼此之間可以互相轉換的材料,我們希望以此將無法利用的廢熱轉化為可以使用的電能。近年來,許多研究指出低維度半導體材料和表面粗糙度可以增加熱電材料轉化效率的評估值(ZT值),因此我們選擇矽(silicon)這種與半導體產業高度相容的材料作為研究對象,將SOI wafer上之矽層以一系列半導體製程(黃光微影、蒸鍍、化學氣相沉積、反應性乾蝕刻……等)製備一量測矽奈米緞帶結構之熱電量測平台,可量測此結構之熱導率、電導率、席貝克係數。隨後量測鍍附矽鍺量子點之表面、選擇性濕蝕刻後之金字塔結構之表面製備的熱電量測微機電系統以探討表面奈米結構對熱電性質之影響。


    Since industrial revolution, the fossil fuels is widely used in human society.
    It produces much pollution and waste heat we can’t use. Thermoelectrical materials can transform the energy between heat and electric. We wish it can transform the waste heat to electrical force. In this year, there are many research
    indicate low-dimensional semiconductor material and surface roughness will increase the ZT value, which can evaluate the thermoelectric conversion efficiency. Therefore, we choose silicon which is highly compatible in semiconductor industry as our research object. After a series of semiconductor process (photolithography, evaporation, CVD, RIE……and so on), the silicon device layer on SOI wafer is batch-fabricated to the thermoelectrical measurement platform of silicon nanoribbon structure. It can measure the thermal conductivity, electrical conductivity, seebeck coefficient. Finally, We study the surface roughness in quantum dots surface and Pyramid structure surface for the thermoelectric property.

    摘要 i Abstract ii 致謝 iii 目錄 v 圖目錄 ix 表目錄 xii 第一章 緒論 1 1.1熱電文獻回顧 1 1.1.1 發展歷史 1 1.1.2 熱電效應 4 1.1.3熱電優值 7 1.2微機電系統 9 1.3 研究動機 10 第二章 實驗設置 12 2.1實驗藥品 12 2.2.實驗流程 13 2.3實驗製程設備 15 2.3.1雷射光罩製作系統(Laser Direct Write Image System) 15 2.3.2光罩對準曝光機(Mask Aligner System) 15 2.3.3低壓化學氣相沉積系統(Low Pressure Chemical Vapor Deposition system,LPCVD) 16 2.3.4旋轉塗佈機 (Spin Coater) 17 2.3.5反應式離子蝕刻系統(Reactive Ion Etching,RIE) 17 2.3.6 PECVD 電漿輔助化學氣相沉積系統 (Plasma-enhanced chemical vapor deposition) 18 2.3.7高真空電子束暨熱阻式蒸鍍系統 (E-gun &Thermal Evaporation System) 18 2.3.8紫外光臭氧清洗機(UV-Ozone Stripper) 19 2.3.9表面輪廓儀 20 2.3.10 快速熱退火系統 (Rapid Thermal Annealing ,RTA) 20 2.3.11鋁線銲線機 21 2.3.12原子力顯微鏡(atomic force microscope ,AFM) 21 2.3.13 掃描式電子顯微鏡 (Scanning Electron Microscopy) 22 第三章 熱電微機電系統平台製作與量測 26 3.1實驗步驟 26 3.1.1實驗試片準備 26 3.1.2第一道製程 30 3.1.3第二道製程 34 3.1.4第三道製程 35 3.1.5第四道製程 39 3.1.6第五道製程 41 3.1.7 掏空二氧化矽形成懸浮結構 42 3.1.8製備熱電性質量測試片 42 3.1.9熱電性質量測 43 第四章 實驗結果與討論 46 4.1元件製程討論 46 4.2矽奈米緞帶結構熱電性質探討 47 4.2.1矽奈米緞帶結構電性值之探討 47 4.2.2不同表面對材料熱傳導率之影響 48 4.2.3矽奈米緞帶結構熱電性質量測 50 4.3結論 52 第五章 未來展望 53 參考文獻 54   圖目錄 ________________________________________ 圖1.1 Seebeck觀察磁針偏轉所用設備示意圖[3] 2 圖1.2 Seebeck效應示意圖[20] 5 圖1.3 Peltier效應示意圖[21] 6 圖1.4 Thomson 示意圖[22] 7 圖1.5 熱電模型 7 圖1.6 材料電路示意圖 7 圖1.7熱電量測之微機電系統 11 圖2.2實驗流程示意圖 14 圖2.2 MA6 光罩對準曝光機外觀[27] 23 圖2.3 LPCVD 設備結構示意圖[28] 23 圖2.4反應性離子蝕刻原理示意圖[29] 24 圖2.5 電漿輔助化學氣相沉積系統結構示意圖[26] 24 圖2.6紫外光臭氧清洗機原理示意圖 25 圖2.7 鋁線焊線機[30] 25 圖3.1 微積體元件製作示意圖 28 圖3.2濕式氧化後SOI wafer 分層結構示意圖 30 圖3.3第一道光罩示意圖 31 圖3.4光學顯微鏡(OM)下之矽奈米緞帶和矽接墊影像 33 圖3.5定義矽奈米緞帶(Si nanoribbon)之幾何結構示意圖 33 圖3.6 利用RIE蝕刻出四點探針電極沉積區域 35 圖3.7第三道製程沉積金屬線圈電阻溫度計之光罩設計圖 38 3.8 金屬掀離製程後光學顯微鏡影像 38 圖3.9 RTA後四點接觸光學顯微鏡之影像 39 圖3.10第四道光罩設計圖 40 圖3.11熱電性質量測之微機電系統SEM圖-1 41 圖3.12熱電性質量測之微機電系統SEM圖-2 42 圖3.13焊線後的金屬接墊示意圖 43 圖3.14量測配置圖 44 圖3.15 鉑線圈電阻對溫隨溫度變化圖 45 圖4.1 元件掏空示意圖 46 圖4.2 不同尺寸之奈米緞帶結構與電阻率之關係圖 48 圖4.3不同表面之矽奈米緞帶之熱導率分布圖 48 圖4.4量子點形成金字塔尖端結構示意圖 50 圖4.5 導電率與溫度之關係圖 51 圖4.6熱導率與溫度之關係圖 51 圖4.7席貝克係數與溫度之關係圖 52 表目錄 ________________________________________ 表2.1實驗藥品 12 表3.1 SOI wafer規格 26 表3.2 LPCVD 濕式氧化參數表 29 表3.3 第一道製程反應性離子蝕刻參數列表 33 表3.4 第二道製程低壓化學氣相沉積矽統參數列表 34 表3.5 第二道製程反應性離子蝕刻參數列表 35 表3.6 第三道製程高真空電子束暨熱阻式蒸鍍系統蒸鍍參數 37 表3.7 第四道製程反應性離子蝕刻參數列表 40 表3.8第五道製程反應性離子蝕刻參數列表 41 表4.1氮化矽薄膜溼式蝕刻率(S:幾乎可忽略) 47

    [1] T. J. Seebeck, "Magnetische Plarisation der Metalle und Erze durch Temperatur-Differenz," Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265-373 (1823).
    [2] J. C. Peltier, "Nouvelles expériences sur la caloricité des courans électrique," Annales de Chimie et de Physique, 56, 371 (1834).
    [3] http://thermoelectrics.matsci.northwestern.edu/thermoelectrics/history.html
    [4] G. Mahan, B. Sales, J. Sharp, "Thermoelectric Materials:New Approaches To An Old Problem," Physics today, 50, 42 (1997).
    [5] A. F. Ioffe, "Semiconductor Thermoelements and Thermoelectric Cooling", Infosearch, London, (1957).
    [6] H. J. Goldsmd, R. W. Dougl, "The use of semiconductors in thermoelectric refrigeration", British Journal Applied Physics, 5, 386 (1954).
    [7] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H Lee, D. Wang, Z. Ren, J. –P. Fleurial, P. Gogna, "New Directions for Low-Dimensional Thermoelectric Materials," Advanced Materials, 19, 1043-1053 (2007).
    [8] D. T. Morelli, T. Caillat, J. -P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, C. Uher, "Low-temperature transport properties of p-type CoSb3," Physical Review B, 51, 9622 (1995).
    [9] G. S. Nolas, D. T. Morelli, T. M. Tritt, "SKUTTERUDITES:A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications," Annual Review Mater, 29, 89 (1999).
    [10] T. Caillat, A. Borshchevsky, J.-P. Fleurial, "Properties of single crystalline semiconducting CoSb3," Journal Applied Physics, 80, 4442 (1996).
    [11] L. D. Hicks, M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Physical Review B, 47, 16631 (1993).
    [12] L. D. Hicks, T. C. Harman, X. Sun, M. S. Dresselhaus, "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, 53, 10493 (1996).
    [13] L. D. Hicks, M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, 47, 12727 (1993).
    [14] T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, K. L. Wang, "Experimental proof-of-principle investigation of enhanced ZT in (001) oriented Si/Ge superlattices," Applied Physics Letters, 76, 3944 (2000).
    [15] G. Chen, "Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices," Physical Review B, 57, 14958 (1998).
    [16] Y. –M. Lin, M. S. Dresselhaus, "Thermoelectric properties of superlattice nanowires," Physical Review B, 68, 75304 (2003).
    [17] C. Dames, G. Chen, "Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires," Journal Applied Physics, 95, 682 (2004).
    [18] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheil, J. K. Yu, W. A. Goddard III, J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature, 451, 168 (2008).
    [19] Y. Lan, A. J. Minnich, G. Chen, Z. Ren, "Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach," Advanced Functional Materials, 20, 357 (2010).
    [20]http://www.itrc.narl.org.tw/Research/Nano/instrument/aligner/aligner.htm
    [21] http://www.buzzle.com/articles/the-peltier-effect-explained.html
    [22] D. M. Rowe, "Thermoelectrics handbook micro to nano," (2006).
    [23] Recent Developments inSemiconductor ThermoelectricPhysics and
    MaterialsJack Baskin School of Engineering, University of California, Santa Cruz,
    California 95064-1077;
    [24] Thermoelectric devices based on one-dimensional nanostructures-J. Mater.
    Chem. A, 2013,1, 6110-6124
    [25] VLSI 製造技術,莊達仁,5 版,高立圖書有限公司
    [26]https://zh.wikipedia.org/wiki/%E6%89%93%E7%B7%9A%E6%8E%A5%
    E5%90%88
    [27] http://www.nnf.ncsu.edu/facilities/lithography/deneme-litho
    [28] Dow Corning, “Chemical Vapor Deposition”, ,Available:http://www.dowcorning.com/content/etronics/etronicschem/etronics_newcvd_tutorial3.asp?DCWS=Electronics&DCWSS=Chemical%20Vapor%20Deposition [Accessed: 25 Nov. 2011]
    [29] http://matthieu.lagouge.free.fr/microtechnology/dry_etch.html
    [30] http://www.super-power-smh.com/company.html新美化光電產品示意圖
    [31]http://lnfwiki.eecs.umich.edu/wiki/Plasma_enhanced_chemical_vapor_deposition
    [32] G. Kumar, G. Prasad, and R. Pohl, "Experimental determinations of the Lorenz number," Journal of materials science, 28, 4261-4272 (1993).
    [33] C. Kittel, "Introduction to solid state physics," Wiley, (2005).
    [34] R. Albers, L. Bohlin, M. Roy, and J. Wilkins, "Normal and umklapp phonon decay rates due to phonon-phonon and electron-phonon scattering in potassium at low temperatures," Physical Review B, 13, 768 (1976).
    [35] T. Baum, D. J Schiffrin, "AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si in KOH for micromachining applications," Journal of Micromechanics and Microengineering, 7, 338 (1997).
    [36] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, P. Yang, "Enhanced thermoelectric performance of rough silicon nanowires," Nature, 451, 163-167 (2008).

    QR CODE
    :::