跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂宛珊
Wan-San Lu
論文名稱: 鈉鉀離子交換波導之製作及其表面消逝波之研究
The fabrication of Na+-K+ ion exchanged waveguide and the characterization of the surface evanescent waves.
指導教授: 戴朝義
Chao-Yi Tai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 100
語文別: 中文
論文頁數: 88
中文關鍵詞: 近場掃描光學顯微術消逝波離子交換波導
外文關鍵詞: ion exchanged waveguide, SNOM, evanescent wave
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文在探討消逝波在鈉鉀離子交換波導表面的分佈情形,並進一步研究金奈米粒
    子受波導表面消逝波推動時的運動情形。
    在實驗上,我們利用Rsoft 軟體模擬不同波導參數下的模態數及模場空間分佈,進一步分析波導表面消逝波與波導尺寸的關係。接著利用模擬結果實際製做鈉鉀離子交換
    波導,製做完成後分別對波導進行波導的光學特性量測,以及利用近場掃描光學顯微鏡
    來量測分析波導表面消逝波的分佈。最後再以532nm 的綠光雷射導入波導,觀察波導表面的金奈米粒子的運動情形,分析CCD 連續拍攝的結果,發現金團簇移動的速度可達317.94μm/sec。


    In this study, we analyze the interplay between the evanescence field distribution and the particle motion based on ion exchanged waveguide.
    Theoretically, waveguides with various geometric parameters are simulated and the corresponding evanescent fields are mapped out to understand the propagation characteristics.
    Experimentally, ion exchanged waveguides are fabricated, and optical measurements are carried out which determines the propagation loss and the mode distribution within the waveguide. The evanescent waves on waveguide surface are then measured by scanning near-field optical microscope(SNOM). Finally, the propellation of gold nanoparticles by the evanescent field was demonstrated. The velocity is estimated to be 317.94 μm/sec, which is three times larger than that predicted by theory. We attribute this result to the aggregation of Au nano particles which effectively enlarge the particle size.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1前言 1 1-2研究動機 7 1-3論文架構 7 第二章 研究方法及波導設計 9 2-1 通道式波導 9 2-2擴散方程式與離子交換波導的折射率分佈 12 2-3 光束傳播法(BEAM PROPAGATION METHODE ,BPM) 13 2-4 波導結構與波導模場的關係 15 2-4-1 Type 1:波導表面介質-空氣;光源偏振態-TE 16 2-4-2 Type 2:波導表面介質-空氣;光源偏振態-TM 16 2-4-3 Type 3:波導表面介質-水;光源偏振態-TE 17 2-4-4 Type 4:波導表面介質-水;光源偏振態-TM 17 2-5波導結構與消逝波的關係 18 2-5-1 Type 1:波導表面介質-空氣;光源偏振態-TE 19 2-5-2 Type 2:波導表面介質-空氣;光源偏振態-TM 21 2-5-3 Type 3:波導表面介質-水;光源偏振態-TE 23 2-5-4 Type 4:波導表面介質-水;光源偏振態-TM 26 第三章 實驗製程與量測分析 31 3-1 離子交換波導 31 3-2 離子交換波導製程方法 32 3-3 波導光學特性量測與分析 35 3-3-1 波導擴散深度 35 3-3-1-1 IWKB原理 35 3-3-1-2 IWKB量測結果與分析 37 3-3-1-3 SIMS原理 38 3-3-1-4 SIMS量測結果與分析 40 3-3-2 波導模場分析 40 3-3-2-1 波導模場量測架設 40 3-3-2-2 波導模場量測結果 41 3-3-3 光纖耦合效率 44 3-3-3-1 光纖耦合模擬計算與結果 44 3-3-3-2 光纖耦合方式 47 3-3-4-1 波導嵌入損耗量測架設 49 3-3-4-2 波導傳遞損耗量測結果 50 3-4 波導表面消逝波的量測與分析 52 3-4-1 近場掃描顯微鏡原理 52 3-4-2 SNOM量測結果與分析 54 3-4-2-1 不同的入射雷射光強度其表面消逝波分佈 54 3-4-2-2 不同的波導模態其表面消逝波分佈 57 3-4-2-3 不同的探針位置量測到的表面消逝波分佈 60 3-5 金奈米粒子的運動及其分析 62 第四章 結論與未來展望 67 4-1結論 67 4-2 未來展望 67 參考文獻 68

    [1] 高宗聖,蔡定平”近場光學新視界” 科學發展,386期,p.22-27(2005)
    [2] A. Ernst. "Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung," Archiv fur Mikroskopische Anatomie , Vol.9 pp. 413–468 (1873)
    [3] http://hyperphysics.phy-astr.gsu.edu/Hbase/phyopt/raylei.html
    [4] L. Novotny “The History of Near-field Optics,” Optics 50,pp.137- 184 (2007)
    [5] G. Binnig, H. Rohrer, Helvetica Physica Acta, Vol. 55,p.726(1982)
    [6] D.M. Eigler, and E.K.Schweizer,“Positioning single atoms with a scanning tunneling microscope,”Nature, Vol. 344, pp.524-526(1990)
    [7] D. M. Schaefer, R. Reifenberger, A. Patil, and R. P. Andres,“Fabrication of two-dimensional arrays of nanometer-size clusterswith the atomic force microscope,”Appl. Phys. Lett., Vol. 66, no. 8, pp. 1012–1014(1995)
    [8] A. Ashkin. “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. Vol.24, pp. 156 - 159 (1970)
    [9] A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared beams.”Nature (London),Vol. 330, pp.769-771(1987).
    [10] A. Ashkin and J. M. Dziedzic, “Optical trapping and Manipulation of. Viruses and Bacteria,” Science ,Vol. 235, p.1517 (1987).
    [11] R. J. Cook and R. K. Hall.”An electromagnetic mirror for ncutral atoms,” Opt. Commun. Vol.43.pp.258-260.(1980)
    [12] K. Satoshi, S. Tadao” Movement of micrometer-sized particles in the evanescent field of a laser beam,” Optics Letters, Vol.17, no. 11, pp. 772-774(1992)
    [13] S. Kawata and T. Tani,” Optically driven Mie particles in an evanescent field along a channeled waveguide,” Optics Letters, Vol. 21, Issue 21, pp. 1768-1770 (1996)
    [14] L.Ovotny , R.X.Brain , and X.S. Xie,” Theory of nanometric optical tweezers,” Phys.Rev.Lett., Vol. 79, pp. 645-648 (1997)
    [15] K. Taguchi, H.Ueno, H.Matsuzaki, and M. Ikeda,” Optical manipulation and observation of nonlinear phenomena from optically trapped microscopic object using optical fibers,” in Proc.OECC Tech.Dig., pp. 68-69 (1998)
    [16] Buican, M. J. Smith, M. A. Crissman, G. C. Salzman, C.C. Stewart, and J.C. Martin” Automated single-cell manipulation and sorting by light trapping,” Appl. Opt., Vol.26, pp.5133-5316 (1987).
    [17] A. Ashkin, and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,”Nature (London),Vol. 235, pp.1517-1520(1987).
    [18] A. Ashkin, “Application of laser radiation pressure,” Science,Vol. 210, pp.1081-1088(1980).
    [19] Kawata, Satoshi; Inouye, Yasushi; Sugiura, Tadao” Near-Field Scanning Optical Microscope with a Laser Trapped Probe.” Japanese Journal of Applied Physics, Vol. 33, Issue 12A, pp. L1725-L1727 (1994).
    [20] L.N.Ng,B.J.Luff,M.N.Zervas,Memer,IEEE,and J.S.Wilkinson,” Forces on a Raylergh Particle in the Cover Region of a Planar Waveguide,” Journal of lightwave technology, Vol.18,no.3,pp.388-400(2000)
    [21] T.N buican,M.J. Smyth,H.A. Crissman, G.C. Salzman C,C, Stewart and J.C. Martin,”Automated single-cell manipulation and sorting by light trapping,”Appl.opt. ,Vol.26, pp.5311(1987)
    [22] S.C. Grover,A.G.Skirtach,R.C.Gauthier and C.P.Grover,J. Biomed.” Automated single-cell sorting system based on optical trapping,”Opt. ,Vol.6,pp.14(2001)
    [23] T.Tanaka and S.Yamamoto,” Optically induced propulsion of small particles in an evenescent field of higherpropagation mode in a multimode, channeled waveguide,”Appl.Phy.Lett. ,Vol.77,pp.3131(2000)
    [24] K. Grujic, O. G. Helleso, J S Wilkinson, J P Hole “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Optics Communications ,Vol. 239, Issue: 4-6, pp. 227-235 (2004)
    [25] M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hansch, Phys. Rev. Lett. ,Vol.68, p.476 (1992)
    [26] D. P. Tsai, and W. C. Lin, Appl. Phys. Lett. , Vol.77, p.1413 (2000)
    [27] C. Haynes, and R. P. Van Duyne, J. Phys. Chem. B, Vol.107, p.7426 (2003)
    [28] D. E. Grupp, H. J. Lezec, T. Thio, T. W. Ebbesen, Adv. Materials , Vol.11, p.860 (1999)
    [29] O.Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, Solar Energy Materials and Solar Cells , Vol.37,p. 337 (1995)
    [30] C. Nylander, B. Liedberg, and T. Lind, Sens. & Actuators , Vol.3, p.79 (1982-1983)
    [31] I. Pockrand, J. D. Swalen, R. Santo, A. Brillante, and M. R. Philpott, J. Chem. Phys., Vol.69,p. 4001 (1978)
    [32] J. R. Sambles, Nature (London) 391, 641 (1998); P. R. Villeneuve, Phys. World 11, 28 (1998).
    [33] Gin''es Lifante,” Integrated Optics”(2003)
    [34] P. L. Pernas, E. Ruiz, J.L. Canta˜no, J. Garrido and B.J. Garc’a, “Channel Waveguides Grown by Selective Area Beam Epitaxy,”Optical Materials, Vol.17, pp.259–262 (2001).
    [35] P.L. Pernas, M.J. Hern’andez, E. Ru’z, E. Cantelar, R. Nevado, C. Morant, G. Lifante and F. Cuss’o, “Zn-Vapor Diffused Er:Yb:LiNbO3 Channel Waveguides Fabricated by Means of SiO2 Electron Cyclotron Resonance Plasma Deposition,”Applied Surface Science, Vol.161,pp.123–130 (2000).
    [36] G. Lifante, T. Balaji and A. Mu˜noz-Yague,“Planar Optical Waveguides Fabricated by Molecular Beam Epitaxy of Pd-Doped CaF2 Layers,”Applied Physics Letters, Vol.70,pp.2079–2081 (1997).
    [37] R. Nevado and G. Lifante, “Low-Loss, Damage-Resistant Optical Waveguides in Zn-Diffused LiNbO3 by a Two-Step Procedure,”Applied Physics A, Vol.72, pp.725–728 (2001).
    [38] G. L. Yip and J. Albert, “Characterization of planar optical waveguides by K+-ion exchange in glass,” Opt. Lett., Vol. 10, no. 3, pp. 151–153(1985)
    [39] 欒丕綱,陳啟昌, “光子晶體”,五南出版,pp.13-15(2006)
    [40] J. Dakin and B. Culshaw, Optical fiber sensors: Principles and components, Vol.1 (Artech House, Boston and London, 1988).
    [41] RSoft Design Group, Inc, “User Menu”.
    [42] J. A. Fleck, Jr., J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” J.Appl. Phys., Vol.10. pp. 129-160 (1976)
    [43] M. D. Feit, and J. A. Fleck, Jr., “Light propagating in graded index optical fibers,” Appl. Opt., Vol.17, pp. 3990-3998(1978)
    [44] M. D. Feit, and J. A. Fleck, Jr., “Calculation of dispersion in graded-index multimode fibers by a propagating beam method,“ Appl.Opt., Vol.18, pp. 2843-2851(1979)
    [45] M. D. Feit, and J. A. Fleck, Jr., “Mode properties and dispersion for two optical fiber-index profiles by the propagating beam method,”Appl. Opt., Vol.18,pp. 3140- 3150(1980)
    [46] M. D. Feit, and J. A. Fleck, Jr., “Computation of mode properties in optical fiber waveguides by a propagating beam method,” Appl. Opt., Vol.19, pp. 1154-1164(1980)
    [47] M. D. Feit, and J. A. Fleck, Jr., “Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam method,” Appl. Opt., Vol.19, pp. 2240- 2246(1980)
    [48] G.R. Hadley, ”Wide-angle beam propagation using Pade approximant operators,” Opt. Lett., Vol.17, p. 1426(1992)
    [49] G.R. Hadley, “Multistep method for wide-angle beam propagation,”Opt. Lett., Vol.17, p. 1743(1992)
    [50] D. Yevick and M. Glasner, “Analysis of forward wide-angle light propagation in semiconductor rib waveguides and integrated-optic structures,” Electron. Lett., Vol.25, pp. 1611-1613(1989)
    [51] H.J.W.M. Hoekstra, G.J.M. Krijnen, and P.V. Lambeck, “New formulations of the beam propagation method based on the slowly varying envelope approximation,” Opt. Comm., Vol.97, pp. 301-303(1993)
    [52] G. H. Chartier, P. Jaussaud, A. D. de Oliveira, and O.Parriaux,“Optical waveguides fabricated by electric-field controlled ion exchange in glass,” Electro. Lett., Vol. 14,pp.132-134(1978)
    [53] T. Izawa and H. Nakagome,“Optical waveguide formed by electrically induced migration of ions in glass plates,”Appl. Phys. Lett. 21, Vol.12, pp.584–586 (1972).
    [54] T. G. Giallorenzi, E. J. West, R. Kirk, R. Ginther, and R. A. Andrews,“Optical waveguides formed by thermal migration of ions in glass,”Appl. Opt. 12(6),pp. 1240–1245 (1973).
    [55] G. L. Yip and J. Albert, “Characterization of planar optical waveguides by K+-ion exchange in glass,’’ Opt. Lett., Vol. 10, pp. 151(1985)
    [56] J. E. Gortych and D. G. Hall, “Fabrication of planar optical waveguides by K+-ion exchange in BK7 and pyrex glass,” IEEEJ. Quantum Electron., Vol. QE-22, p. 892(1986)
    [57] T. I. Cullen, C. N. Ironside, C. T. Seaton, and G. I. Stegeman, “Semiconductor-doped glass ion-exchanged waveguides,” Appl. Phys. Lett., Vol. 49, pp. 1403(1986)
    [58] J. Albert,“Ion exchange from salt melts,”in Introduction to Glass Integrated Opticals, S. I. Najafi, ed., pp.7-38 (1992)
    [59] Advanced Optics,Schott North America, Inc, “Optical Glass Data Sheets,”2011(http://www.us.schott.com)
    [60] 明裕玻璃工業有限公司“Pyrex玻璃技術文件”
    [61] M. N. Weiss and R. Srivastava ,“Determination of ion-exchanged channel waveguide profile parameters by mode-index measurements, ”APPLIED OPTICS, Vol. 34, No. 3, pp.455-458(1995)
    [62] A.Geden,“Comparison between rigorous theory and WKB-analysis of modes in graded-index waveguides,”Optics Commun, Vol.12, pp.329-332(1974)
    [63] Najafi S.I., R. Srivastava and R.V. Ramaswamy,“Wavelength-dependent propagation characteristics of Ag+-Na+ exchange planar glass waveguides,”Appl. Opt, Vol.25,pp.1840-1843(1986)
    [64] J.M White and P.F. Heidrich ,“Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,”Appl. Opt., Vol.15, pp.151-155(1976)
    [65] P. Hertel and H.P. Menzler,“Improved inverse WKB procedure to reconstruct refractive index profiles of dielectric planar waveguides,”Appl. Phys., Vol. B , pp.75-80(1987)
    [66] K. S. Chiang,“Effective-index function method for the analysis and design of inhomogeneous planar waveguides based on the WKB equation,”Opt. Comm., Vol. 84 , pp.258-263(1991)
    [67] SECONDARY ION MASS SPECTROMETRY (SIMS)
    [68] C. R. Pollock ,M. Lipson, “Integrated Photonics”(2003)
    [69] K. Imura,K. Ueno,H. Misawa, and H. Okamoto,“Anomalous Light Transmission from Plasmonic-Capped Nanoapertures,” Nano Lett. , Vol.11,pp. 960–965( 2011)
    [70] L.N. Ng, B.J. Luff1, M.N. Zervas, and J.S. Wilkinson,“Propulsion of gold nanoparticles on optical waveguides,”Optics Communications, Vol.208, pp.117–124(2002)

    QR CODE
    :::