跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳智誠
Chih-Cheng Wu
論文名稱: 微機電雙光柵之光調制器
Micromachined light modulatorusing crossed grating by actuators
指導教授: 張正陽
Jeng-Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 92
語文別: 中文
論文頁數: 110
中文關鍵詞: 微機電光柵光調制器
外文關鍵詞: MEMS, Light modulation, Grating
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文摘要
    本論文主要為利用微機電以及半導體製程的技術,製作出靜態的微光柵和結合梳狀致動器與光柵之可動式光柵;成功製作後,可加電壓致動梳狀致動器來拉動光柵,使得兩光柵輪廓間有一相對位置的改變,因而造成此雙光柵等效輪廓(Effective profile)的變化,進而改變入射此雙光柵之雷射光的繞射現像;而透過雙光柵的不同設計,可使此元件作為光調制器以及光開關,並提供各種不同的需求。
    在本文中,將製作分別以石英(Quartz)、氮化矽薄膜(Si3N4 Thin Filn)、矽(Silicon)為基材的靜態微光柵;另外,也將製作梳狀致動器並量測其致動情形以及量測石英雙光柵探討本文中理論的可行性;最後則將分別製作結合梳狀致動器與矽光柵、以及結合梳狀致動器與氮化矽薄膜光柵的元件,並分別探討微機電矽雙光柵及氮化矽薄膜雙光柵的特性;而由於本文中之元件是以矽為基板並以微光機電的技術所製作,因此可達到微小化及大量製造節省成本的優點。


    目錄 論文摘要……………………………………………………………......Ⅰ 致謝…………………………………………………………………......Ⅱ 目錄…………………………………………………………………......Ⅳ 圖目錄…………………………………………………………………..Ⅵ 表目錄………………………………………………………………..ⅩⅠ 第一章 緒論……………………………………………………………..1 1.1 前言……………………………………………………………..1 1.2 文獻回顧與研究動機…………………………………………..3 1.2.1聲光式光開關…………………………………………….4 1.2.2氣泡式光開關…………………………………………….4 1.2.3全像式光開關…………………………………………….5 1.2.4液晶式光開關…………………………………………….5 1.2.5熱光式光開關………………………………………….....6 1.2.6微機電系統之光開關…………………………………….7 1.2.6-1二維微機電光開關………………………….………….8 1.2.6-2三維微機電光開關…………………………………….11 1.3 研究目標與論文大綱…………………………………………13 第二章 基本原理………………………………………………………14 2.1 繞射理論簡介…………………………………………………14 2.2 各類光柵簡介…………………………………………………15 2.2.1二階式光柵 (Binary Grating)…………………………..17 2.2.2閃耀式光柵(Blazed Grating)……………………………18 2.2.3多階式光柵(Multi-level Grating)……………………….19 2.3 交叉式雙光柵(Crossed Gratings)簡介………………………..20 第三章 元件設計與模擬 3.1 微致動器(Micro-Actuaor)簡介……………………………….23 3.2 梳狀致動器(Comb drive)原理介紹…………………………...25 3.3 各類梳狀致動器設計…………………………………………29 3.3.1以表面微加工技術製作之梳狀致動器…………………29 3.3.2以SOI晶片技術製作之梳狀致動器……………………31 3.3.3以共用晶片技術製作之梳狀致動器……………………34 3.4 交叉式光柵之分析與模擬……………………………………38 第四章 元件製程與討論………………………………………………41 4.1 半導體製程技術………………………………………………41 4.1.1薄膜沈積及成長(Thin Film Deposition & Growth)….…41 4.1.2微影製程(Lithography)…………………………..………47 4.1.3蝕刻(Etching)………………………………….…………50 4.2石英(Quartz)光柵之製作………………………………………54 4.3氮化矽(SiNx)薄膜光柵之製作…………………………………57 4.4 梳狀致動器之製作……………………………………………60 4.4.1以面型微加工技術製作之梳狀致動器………………...60 4.4.2以SOI晶片技術製作之梳狀致動器……………………70 4.5微機電雙光柵之製作………………………………………….75 4.5.1梳狀致動器結合矽光柵…………………………………75 4.5.2梳狀致動器結合氮化矽薄膜光柵………………………79 第五章 元件量測與討論………………………………………………83 5.1 石英雙光柵之量測……………………………………………83 5.2 梳狀致動器之量測……………………………………………89 5.3 氮化矽薄膜光柵之量測………………………………………91 5.4微機電雙光柵之量測……………………………………….....92 第六章 結論與未來展望………………………………………………94 第七章 文獻參考………………………………………………………95

    參考文獻
    [1] M. A. Bourouha, M. Bataineh, and M. Guizani, “Advances in Optical Switching and Networking: Past, Present, and Future”, Proceedings IEEE Southeast Conference, p.405-413 (2002)
    [2] A. Kar-Roy, and C. S. Tsai, “8 x 8 Symmetric Nonblocking Integrated Acoustooptic Space Switch Module on LiNbO3” IEEE Photonics Technology Letters, Vol.4 (1992)
    [3] J.E. Fouquet, S. Venkatesh, M. Troll, D. Chen, H.F. Wong, and P.W. Barth, “A Compact, Scalable Cross-Connect Switch Using Total Internal Reflection Due to Thermally-Generated Bubbles” IEEE, p.169-170 (1998)
    [4] I.G. Manolis, T.D. Wilkinson, M.M. Redmond, and W.A. Crossland, “Reconfigurable Multilevel Phase Holograms for Optical Switches” IEEE Photonics Technology Letters, Vol.14 (2002)
    [5] S. Sumriddetchkajorn, D. K. Sengupta, and N. A. Riza, “Self-Aligning 2 x 2 Fiber-Optic Switch Using Liquid Crystals” IEEE, p.135-136 (1999)
    [6] D. I. Halliday, and A. Agarwal, “The Theoretical and Experimental Behavior of a Thermooptic Bulk Deflector Fiber-optic Circuit Switch” Journal of Lightwave Technology, Vol. LT-5, (1987)
    [7] P. D. Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, “Digital MEMS for Optical Switching” IEEE Communications Magazine, p.88-95 (2002)
    [8] R. T. Chen, H. Nguyen, and M. C. Wu, “A High-Speed Low-Voltage Stress-Induced Micromachined 2 x 2 Optical Switch” IEEE Photonics Technology Letters, Vol. 11, (1999)
    [9] J. Li, Q. X. Zhang, A.Q. Liu, W.D. Zhong, and C. Lu, “MEMS switch based serial reconfigurable OADM” Optics Communications, Vol.230, p.81-89 (2004)
    [10] W. H. Juan, and S. W. Pang, “High-Aspect-Ratio Si Vertical Micromirror Arrays for Optical Switching” Journal of Microelectromechanical systems, Vol. 7 (1998)
    [11] R. A. Miller, Y. C. Tai, G. Xu, J. Bartha, and F. Lin, “An Electromagnetic MEMS 2 x 2 Fiber Optic Bypass Switch” International Conference on Solid-State Sensors and Actuators, p.89-92 (1997)
    [12] T. Matsuura, T. Fukami, M. Chabloz, Y. Sakai, S. I. Izuo, A. Uemura, S. I. Kaneko, K. Tsutsumi, and K. Hamanaka, “Silicon micro optical switching device with an electromagnetically operated cantilever” Sensors and Actuators, Vol.83, p.220-224 (2000)
    [13] S. S. Lee, E. Motamedi, and M. C. Wu, “Surface Micromachined Free Space Fiber Optic Switches with Integrated Microactuators for Optical Fiber Communication Systems” International Coference on Solid-State Sensors and Actuators, p.85-88 (1997)
    [14] S. S. Lee, L. S. Huang, C. J. Kim, and M. C. Wu, “Free-Space Fiber-Optic Switches Based on MEMS Vertical Torsion Mirrors” Journal of Lightwave Technology, Vol. 17, (1999)
    [15] A. A. Yasseen, J. N. Mitchell, J. F. Klemic, D. A. Smith, and M. Mehgregany, “ A Rotary Electrostatic Micromotor 1x8 Optical Switch”, IEEE Journal of Selected Toptics in Quantum Electronics, Vol.5, (1999)
    [16] V. A. Aksyuk et al. “Lucent Microstar Micromirror Array Technology for Large Optical Crossconnects,” Proceeding SPIE, Vol. 4178 (2000)
    [17] W. S. Rockward, and D. C. O’Shea, “Crossed phase gratins with diffractive optical elements”, Applied Optics, Vol. 37 (1998)
    [18] D. C. O’Shea, and W. S. Rockward, ‘Light modulation from crossed phase gratings’, Optics Letters, Vol. 23 (1998)
    [19] M.C. Carrozza, P. Dario, B. Hannaford, and A. Menciassi, “4-axis
    electromagnetic microgripper,” Robotics and Automation Proceedings, Vol.4, pp 2899 –2904 (1999)
    [20] M. C. Carrozza, A. Menciassi, and P. Dario, “The development of a LIGA-microfabricated gripper for micromanipulation tasks,” Journal of Micromechnics and Microengineering, Vol.8, pp.141-143 (1998).
    [21] H. Du, C. Su, M. K. Lim. and W. L. Jin, “A micromachined thermally-driven gripper: a numerical and experimental study,” Smart Material Structure, Vol.8, pp 616-622, (1999).
    [22] M. Kohl, E. Just, W. Pfleging, S. Miyazaki, “SMA microgripper with integrated antagonism,” Sensors and Actuators, Vol.83, pp208-213, (2000).
    [23] P. B. Chu and S. J. Pister, “Analysis of closed-loop control of parallel-plate electrostatic microgrippers ,” Robotics and Automation, Proceedings, San Diego, CA, Vol.1, pp 820 -825, (1994).
    [24] W. C. Tang, T. C. Nguyen, and R. T. Howe, “Laterally Driven Polysilicon Resonant Microstructures”, Micro Electro Mechanical Systems, Proceedings, ''An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots''. IEEE, p.53-59(1989)
    [25] Y. P. Ho, P. T. Liu, C. C. Lo, and H. Y. Lin, “SMart Design Handbook V3.0”, Walsin Lihwa Corp. MEMS Business Unit(2003)
    [26] 莊達人,”VLSI製造技術”, 高立圖書有限公司(2002)
    [27] M. Sekimoto, H.Yoshihara, and T. Ohkubo, “Silicon Nitride Single-layer x-ray mask”, Journal of Vacuum and Science Technology, Vol.21, 1017-1021(1982)
    [28] J.Y. Kim, and C. J. Kim,”Comparative study of various release methods for polysilicon surface micromachining”, Micro Electro Mechanical Systems, MEMS ''97, Proceedings, IEEE., Tenth Annual International Workshop (1997)
    [29] Y. Fukuta, H. Fujita, and H. Toshiyoshi, “Vapor Hydrofluoric Acid Sacrificial Release Technique for Micro Electro Mechanical Systems Using Labware”, Journal of Applied Physics, Vol.42, p.3690-3694 (2003)

    QR CODE
    :::