| 研究生: |
吳智誠 Chih-Cheng Wu |
|---|---|
| 論文名稱: |
微機電雙光柵之光調制器 Micromachined light modulatorusing crossed grating by actuators |
| 指導教授: |
張正陽
Jeng-Yang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 微機電 、光柵 、光調制器 |
| 外文關鍵詞: | MEMS, Light modulation, Grating |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文摘要
本論文主要為利用微機電以及半導體製程的技術,製作出靜態的微光柵和結合梳狀致動器與光柵之可動式光柵;成功製作後,可加電壓致動梳狀致動器來拉動光柵,使得兩光柵輪廓間有一相對位置的改變,因而造成此雙光柵等效輪廓(Effective profile)的變化,進而改變入射此雙光柵之雷射光的繞射現像;而透過雙光柵的不同設計,可使此元件作為光調制器以及光開關,並提供各種不同的需求。
在本文中,將製作分別以石英(Quartz)、氮化矽薄膜(Si3N4 Thin Filn)、矽(Silicon)為基材的靜態微光柵;另外,也將製作梳狀致動器並量測其致動情形以及量測石英雙光柵探討本文中理論的可行性;最後則將分別製作結合梳狀致動器與矽光柵、以及結合梳狀致動器與氮化矽薄膜光柵的元件,並分別探討微機電矽雙光柵及氮化矽薄膜雙光柵的特性;而由於本文中之元件是以矽為基板並以微光機電的技術所製作,因此可達到微小化及大量製造節省成本的優點。
參考文獻
[1] M. A. Bourouha, M. Bataineh, and M. Guizani, “Advances in Optical Switching and Networking: Past, Present, and Future”, Proceedings IEEE Southeast Conference, p.405-413 (2002)
[2] A. Kar-Roy, and C. S. Tsai, “8 x 8 Symmetric Nonblocking Integrated Acoustooptic Space Switch Module on LiNbO3” IEEE Photonics Technology Letters, Vol.4 (1992)
[3] J.E. Fouquet, S. Venkatesh, M. Troll, D. Chen, H.F. Wong, and P.W. Barth, “A Compact, Scalable Cross-Connect Switch Using Total Internal Reflection Due to Thermally-Generated Bubbles” IEEE, p.169-170 (1998)
[4] I.G. Manolis, T.D. Wilkinson, M.M. Redmond, and W.A. Crossland, “Reconfigurable Multilevel Phase Holograms for Optical Switches” IEEE Photonics Technology Letters, Vol.14 (2002)
[5] S. Sumriddetchkajorn, D. K. Sengupta, and N. A. Riza, “Self-Aligning 2 x 2 Fiber-Optic Switch Using Liquid Crystals” IEEE, p.135-136 (1999)
[6] D. I. Halliday, and A. Agarwal, “The Theoretical and Experimental Behavior of a Thermooptic Bulk Deflector Fiber-optic Circuit Switch” Journal of Lightwave Technology, Vol. LT-5, (1987)
[7] P. D. Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, “Digital MEMS for Optical Switching” IEEE Communications Magazine, p.88-95 (2002)
[8] R. T. Chen, H. Nguyen, and M. C. Wu, “A High-Speed Low-Voltage Stress-Induced Micromachined 2 x 2 Optical Switch” IEEE Photonics Technology Letters, Vol. 11, (1999)
[9] J. Li, Q. X. Zhang, A.Q. Liu, W.D. Zhong, and C. Lu, “MEMS switch based serial reconfigurable OADM” Optics Communications, Vol.230, p.81-89 (2004)
[10] W. H. Juan, and S. W. Pang, “High-Aspect-Ratio Si Vertical Micromirror Arrays for Optical Switching” Journal of Microelectromechanical systems, Vol. 7 (1998)
[11] R. A. Miller, Y. C. Tai, G. Xu, J. Bartha, and F. Lin, “An Electromagnetic MEMS 2 x 2 Fiber Optic Bypass Switch” International Conference on Solid-State Sensors and Actuators, p.89-92 (1997)
[12] T. Matsuura, T. Fukami, M. Chabloz, Y. Sakai, S. I. Izuo, A. Uemura, S. I. Kaneko, K. Tsutsumi, and K. Hamanaka, “Silicon micro optical switching device with an electromagnetically operated cantilever” Sensors and Actuators, Vol.83, p.220-224 (2000)
[13] S. S. Lee, E. Motamedi, and M. C. Wu, “Surface Micromachined Free Space Fiber Optic Switches with Integrated Microactuators for Optical Fiber Communication Systems” International Coference on Solid-State Sensors and Actuators, p.85-88 (1997)
[14] S. S. Lee, L. S. Huang, C. J. Kim, and M. C. Wu, “Free-Space Fiber-Optic Switches Based on MEMS Vertical Torsion Mirrors” Journal of Lightwave Technology, Vol. 17, (1999)
[15] A. A. Yasseen, J. N. Mitchell, J. F. Klemic, D. A. Smith, and M. Mehgregany, “ A Rotary Electrostatic Micromotor 1x8 Optical Switch”, IEEE Journal of Selected Toptics in Quantum Electronics, Vol.5, (1999)
[16] V. A. Aksyuk et al. “Lucent Microstar Micromirror Array Technology for Large Optical Crossconnects,” Proceeding SPIE, Vol. 4178 (2000)
[17] W. S. Rockward, and D. C. O’Shea, “Crossed phase gratins with diffractive optical elements”, Applied Optics, Vol. 37 (1998)
[18] D. C. O’Shea, and W. S. Rockward, ‘Light modulation from crossed phase gratings’, Optics Letters, Vol. 23 (1998)
[19] M.C. Carrozza, P. Dario, B. Hannaford, and A. Menciassi, “4-axis
electromagnetic microgripper,” Robotics and Automation Proceedings, Vol.4, pp 2899 –2904 (1999)
[20] M. C. Carrozza, A. Menciassi, and P. Dario, “The development of a LIGA-microfabricated gripper for micromanipulation tasks,” Journal of Micromechnics and Microengineering, Vol.8, pp.141-143 (1998).
[21] H. Du, C. Su, M. K. Lim. and W. L. Jin, “A micromachined thermally-driven gripper: a numerical and experimental study,” Smart Material Structure, Vol.8, pp 616-622, (1999).
[22] M. Kohl, E. Just, W. Pfleging, S. Miyazaki, “SMA microgripper with integrated antagonism,” Sensors and Actuators, Vol.83, pp208-213, (2000).
[23] P. B. Chu and S. J. Pister, “Analysis of closed-loop control of parallel-plate electrostatic microgrippers ,” Robotics and Automation, Proceedings, San Diego, CA, Vol.1, pp 820 -825, (1994).
[24] W. C. Tang, T. C. Nguyen, and R. T. Howe, “Laterally Driven Polysilicon Resonant Microstructures”, Micro Electro Mechanical Systems, Proceedings, ''An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots''. IEEE, p.53-59(1989)
[25] Y. P. Ho, P. T. Liu, C. C. Lo, and H. Y. Lin, “SMart Design Handbook V3.0”, Walsin Lihwa Corp. MEMS Business Unit(2003)
[26] 莊達人,”VLSI製造技術”, 高立圖書有限公司(2002)
[27] M. Sekimoto, H.Yoshihara, and T. Ohkubo, “Silicon Nitride Single-layer x-ray mask”, Journal of Vacuum and Science Technology, Vol.21, 1017-1021(1982)
[28] J.Y. Kim, and C. J. Kim,”Comparative study of various release methods for polysilicon surface micromachining”, Micro Electro Mechanical Systems, MEMS ''97, Proceedings, IEEE., Tenth Annual International Workshop (1997)
[29] Y. Fukuta, H. Fujita, and H. Toshiyoshi, “Vapor Hydrofluoric Acid Sacrificial Release Technique for Micro Electro Mechanical Systems Using Labware”, Journal of Applied Physics, Vol.42, p.3690-3694 (2003)