跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳佳紋
Jia-wun Wu
論文名稱: 奈米金/石墨烯/離子液體複合電極對葡萄糖、過氧化氫和果糖纈胺酸的電化學感測研究
Electrochemical Sensing Performance of Gold/Graphene/Ionic Liquid Nanocomposite Electrodes Towards Glucose, Hydrogen Peroxide, and Fructose Valine
指導教授: 張仍奎
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 161
中文關鍵詞: 電化學感測器葡萄糖過氧化氫果糖纈胺酸金奈米顆粒離子液體石墨烯超臨界流體
外文關鍵詞: Electrochemical Sensor, Glucose, Hydrogen Peroxide, Fructose Valine, Gold Nanoparticle, Ionic liquid, Graphene, Super Critical Fluid
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以超臨界二氧化碳流體法合成金奈米顆粒於石墨烯、多壁奈米碳管和碳黑上,尺寸大小接近10 nm,利用貴重儀器SEM、TGA、XRD、TEM分析其表面形貌、金屬含量、顆粒大小、均勻度等,與空氣中製程的金奈米顆粒來比較催化性質,搭配離子液體調配出催化及感測較為有利的組合。
    離子液體與適當的碳材組合,電化學訊號獲得良好的改善,為了進一步提升感測電極的靈敏度及選擇性,將碳材、金奈米顆粒及離子液體三者相結合,當利用離子液體作為輔助時,陰離子主導了電化學感測行為,當不同的待測物與牽涉入的酵素,增益效果及行為也不盡相同,使用多種離子液體來做系統性的研究。
    非酵素葡萄糖感測器,利用超臨界流體製備的金奈米顆粒比一般空氣中製備的均勻,催化性質較好。以石墨烯為載體的複合材料(不含離子液體)偵測葡萄糖,其電化學感測訊號略低於以多壁奈米碳管為載體者,透過結合離子液體BMPTFSI,進而改善了感測電極的電化學傳輸訊號。抗壞血酸所產生的干擾電流訊號小於5%。測試其重複使用性,應答電流並無太大的衰退情形。
    非酵素過氧化氫感測器,運用不同種碳材修飾,其結果為石墨烯和多壁奈米碳管較敏感,碳黑較遜色。加入金奈米顆粒後的碳材擁有更高活性面積和金的催化效果,靈敏度得到提升。加入離子液體後對偵測H2O2的靈敏度都有提升的效果。輔以離子液體抑制氧氣干擾的現象十分有效,能緩解約五分之四的電流干擾訊號。
    酵素葡萄糖感測器中,葡萄糖氧化酶對親水性的離子液體在氧化還原時有很強的電荷轉移。利用不同離子液體固定葡萄糖酵素並存放在較嚴苛的環境下,室溫空氣環境中存放五天,選擇疏水性離子液體輔助電極有效保存酵素的活性在25℃。
    酵素型果糖纈胺酸,使用輔以BMPTFSI離子液體之電極感測性質最佳,加入與人體血液中接近濃度的抗壞血酸、多巴胺和尿酸作為干擾物,仍然能維持97%的應答電流值,說明此三種物種在這裡不構成干擾。放置室溫25℃空氣環境中存放五天,活性排序為與酵素型葡萄糖感測器相同。
    由實驗結果得知,對於不同的待測物可藉由石墨烯、金奈米顆粒及離子液體間的互相搭配,而達到最佳的偵測效果,與酵素良好的交互作用還能增加其穩定性及存放時效,顯示這三種材料運用於電化學
    感測器上的可行性。


    In this study, nanosized Au particles (approximately 10nm in diameter) are uniformly distributed on graphene, carbon nanotubes, and carbon black using a supercritical CO2 fluid (ScCO2). SEM, TGA, XRD, and TEM are adopted to examine microstructures, Au loading amounts, and crystalline of the composites. Compared with the conventional chemical deposition process, (the ScCO2) process produces electrodes with superior electrochemical sensing performance. It is also noted that incorporation of ionic liquids (ILs) in the electrode promotes its detection sensitivity.
    To increase sensitivity and selectivity, catalytic gold nanoparticles have been loaded on appropriate carbon nanostructures combining with ionic liquid. It is found that the anions of ILs, instead of the cations dominate the electrochemical sensing performance. For various analysts (and thus various enzymes), different ILs should be used to optimize the electrode properties.
    The ScCO2 fluid can highly disperse Au on the carbon supports, leading to an enhanced catalytic activity of Au toward enzymeless glucose sensor. With IL, the Au/graphene electrodes exhibited considerably greater sensing performance than that of the Au/MWCNT electrodes; this trend is opposite to that without IL incorporation. The interference current from AA was less than 5% of the glucose oxidation signal. The sensors have
    satisfactory reproducibility and excellent stability.
    Various different carbon materials to modify enzymeless H2O2 sensor, and the results indicate graphene and MWCNT are more sensitive than carbon black. Decorating Gold nanoparticle on carbon material could create high reaction area and lead to enhanced catalytic activity for electrochemical sensing. After incorporate with IL, promote the sensitivity of H2O2, and compress the interference of O2. Moreover, the most suitable IL could
    release 80% interference current of O2.
    Glucose oxidase immobilize on ScCO2Au/Graphene electrode have strong direct electron transfer in reoxide with hydrophilic IL toward enzyme glucose sensor. The electrode immobilize enzyme with different IL and storage in practical environment. As a result of selecting hydrophobic IL could keep enzyme activity in room temperature after five days.
    The ScCO2Au/Graphene with BMPTFSI is the most suitable electrode to be an electrochemical fructose valine sensor. The proposed electrode can be performed without significant interference by AA, DA, UA at the concentration levels typically found in the human body and still keep 97% responsible current density for FV. The proposed electrode storage in practical environment after five days, and active series is the same with
    enzyme glucose sensor.
    To achieve the best detection results or increase stability of enzyme electrode and storage time by means of selecting graphene, gold nanoparticle, and proposed IL for differnet analyst. This study shows they making modify
    electrode promising for practical applications.

    總目錄 摘要 I Abstract III 誌謝 VI 總目錄 VII 表目錄 X 圖目錄 XII 一、前言 1 二、研究背景與文獻回顧 4 2-1電化學感測器 4 2-2碳材料 6 2-2-1石墨烯概論 6 2-2-2奈米碳管概論 8 2-2-3石墨烯與奈米碳管在電化學感測上的比較 9 2-3金奈米顆粒 12 2-3-1金奈米顆粒概論 12 2-3-2金奈米顆粒與酵素 14 2-4離子液體 15 2-4-1離子液體概論 15 2-4-2離子液體與酵素 16 三、實驗方法與步驟 31 3-1碳材料製備 31 3-1-1 奈米碳管 (MWCNT) 31 3-1-2 碳黑 (CB) 31 3-1-3石墨烯 (Graphene) 31 3-2 製備金/碳材之複合材料 32 3-3材料特性鑑定 33 3-3-1 碳材微結構之分析 33 3-3-2 金奈米粒子承載量之分析 33 3-3-3 複合材料結晶特性之鑑定 33 3-3-4 複合材料微結構之分析 34 3-4 電化學感測實驗流程 34 3-4-1非酵素型葡萄糖與過氧化氫感測電極之製備 35 3-4-2酵素型葡萄糖感測電極之製備 35 3-4-3酵素型果糖纈氨酸感測電極之製備 36 四、結果與討論 42 4-1材料分析 42 4-1-1 掃描式電子顯微鏡分析(SEM) 42 4-1-2熱重分析法(TGA) 42 4-1-3粉末X光繞射分析(XRD) 43 4-1-4穿透式電子顯微鏡(TEM) 43 4-2電化學感測 50 4-2-1非酵素型葡萄糖感測器 50 4-2-2非酵素型過氧化氫感測器 70 4-2-3酵素型葡萄糖感測器 86 4-2-4酵素型果糖纈氨酸感測器 103 五、結論 111 參考文獻 113

    [1] Y. Myung, D. M. Jang, Y. J. Cho, H. S. Kim, J. Park, J.U. Kim, Y. Choi, C. J. Lee, The Journal of Physical Chemistry C 113 (2009) 1251.
    [2] X. Chen, Z. Lin, D.J. Chen, T. Jia, Z. Cai, X. Wang, X. Chen, G. Chen, M. Oyama, Biosensors and Bioelectronics 25 (2010) 1803.
    [3] K.J. Huang, Q.S. Jing, Z.W. Wu, L. Wang, C.Y. Wei, Colloids and Surfaces B: Biointerfaces 88 (2011) 310.
    [4] Y. Bao, J. Song, Y. Mao, D. Han, F. Yang, L. Niu, A. Ivaska Electroanalysis 23 (2011) 878.
    [5] M. Mallesha, R. Manjunatha, C. Nethravathi, G. S. Suresh, M. Rajamathi, J. S. Melo, T. V. Venkatesha, Bioelectrochemistry 81 (2011) 104 .
    [6] A.K. Geim, K.S. Novoselov, Nature Materials 6 (2007) 183.
    [7] Hummers, W.S. and R.E. Offeman, Journal of the American Chemical Society 80 (1958)1339.
    [8] Q. He, H. G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang,P. Chen, H. Zhang, ACS Nano 4 (2010) 3201.
    [9] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Advanced Materials 22 (2010) 3906.
    [10] K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nature Chemistry 2 (2010) 1015.
    [11] Y. Wang, Y. Shao, D. W. Matson, J. Li, Y. Lin, ACS Nano 4 (2010) 1790.
    [12] D. Chen, L. Tang, J. Li, Chemical Society Reviews 39 (2010) 3157.
    [13] M. Zhou, Y. Zhai, S. Dong, Analytical Chemistry 81 (2009) 5603.
    [14] N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis,A. Potenza, S. S. Dhesi, H. Marchetto, Advanced Functional Materials 18 (2008) 3506.
    [15] R. T. Kachoosangi, R. G. Compton, Analytical and Bioanalytical Chemistry 387 (2007) 2793.
    [16] H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P. M. Ajayan, Science 296 (2002) 884.
    [17] K. Balasubramanian, M. Burghard, Small 1 (2005) 180.
    [18] P. Avouris, M. Freitag, V. Perebeinos, Nature Photonics 2 (2008) 341.
    [19] H. Qian, A. Bismarck, E. S. Greenhalgh, G. Kalinka, M. S. P. Shaffer, Chemistry of Materials 20 (2008) 1862.
    [20] S. Chaudhary, H. Lu, A. M. Müller, C. J. Bardeen, M. Ozkan, Nano Letters 7 (2007) 1973.
    [21] X. Chen, Z. Cai, Z. Lin, T. Jia, H. Liu, Y. Jiang, X. Chen, Biosensors and Bioelectronics 24 (2009) 3475.
    [22] L. Dai, A. Patil, X. Gong, Z. Guo, L. Liu, Y. Liu, D. Zhu, Chemphyschem 4 (2003) 1150.
    [23] B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P. M. Ajayan, Nature 416 (2002) 495.
    [24] L. Qu, F. Du, L. Dai, Nano Letters 8 (2008) 2682.
    [25] J. K. Campbell, L. Sun, R. M. Crooks, Journal of the American Chemical Society 121 (1999) 3779.
    [26] M. Pumera, Langmuir 23 (2007) 6453.
    [27] T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, Science 300 (2003) 2072.
    [28] K. S. Prasad, G. Muthuraman, J.M. Zen, Electrochemistry Communications 10 (2008) 559.
    [29] D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, Nature Nanotechnology 3 (2008) 101.
    [30] A. Ambrosi, M. Pumera, Physical Chemistry Chemical Physics 12 (2010) 8943.
    [31] S. Alwarappan, A. Erdem, C. Liu, C.Z. Li, The Journal of Physical Chemistry C 113 (2009) 8853.
    [32] Y. Wang, Y. Li, L. Tang, J. Lu, J. Li, Electrochemistry Communications 14 (2009) 889.
    [33] J. Wang, S. Yang, D. Guo, P. Yu, D. Li, J. Ye, L. Mao, Electrochemistry Communications 11 (2009) 1892.
    [34] C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Biosensors and Bioelectronics 25 (2010) 1070.
    [35] H. Chang, X. Wang, K.K. Shiu, Y. Zhu, J. Wang, Q. Li, B. Chen, H. Jiang, Biosensors and Bioelectronics 41 (2013) 789.
    [36] Q. Yi, W. Yu, Microchim Acta 165 (2009) 381.
    [37] Y. Hu, J. Jin, P. Wu, H. Zhang, C. Cai, Electrochimica Acta 56 (2010) 491.
    [38] K. Zhou, Y. Zhu, X. Yang, J. Luo, C. Li, S. Luan, Electrochimica Acta 55 (2010) 3055.
    [39] Y. Zhou, C. Y. Wang, Y. R. Zhu, and Z. Y. Chen, Chemistry of Materials 11 (1999) 2310.
    [40] S. Mössmer, J. P. Spatz, M. Möller, T. Aberle, J. Schmidt, W. Burchard, Macromolecule 33 (2000) 4791.
    [41] T. K. Sau, A. Pal, N.R. Jana, Z.L. Wang, T. Pal, Journal of Nanoparticle Research 3 (2001) 257.
    [42] S. Meltzer, R. Resch, B. E. Koel, M. E. Thompson, A. Madhukar, A. A. G. Requicha, P. Will, Langmuir 17 (2001) 1713.
    [43] J. A. Reed, A. Cook, D. J. Halaas, P. Parazzoli, A. Robinson, T. J. Matula, F. Grieser, Ultrasonics Sonochemistry 10 (2003) 285.
    [44] K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, Y. Yobiko, Langmuir 17( 2001) 7717.
    [45] K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, Y. Yobiko, Y. Yoo, Bulletin of the Chemical Society of Japan 75 (2002) 2289.
    [46] A. Henglein, D. Meisel, Langmuir 14( 1998) 7392.
    [47] A. Dawson, P. V. Kamat, The Journal of Physical Chemistry B 104 (2000) 11842.
    [48] B. Wong, S. Yoda, S. M. Howdle, The Journal of Supercritical Fluids 42 (2007) 282.
    [49] J.W. Wu, C.H.Wang, Y.C. Wang, J.K. Chang, Biosensors and Bioelectronics 46 (2013) 30.
    [50] B. Hvolbak, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen, J. K. Norskov, Nano Today 2 (2007) 14.
    [51] M. Valden, X. Lai, D. W. Goodman, Science 281 (1998) 1647.
    [52] M. Valden, S. Pak, X. Lai, D.W. Goodman, Catalysis Letters 56 (1998) 7.
    [53] A. Sanchez, S. Abbet, U. Heiz, W.D. Schneider, H. Ha1kkinen, R. N. Barnett, U. Landman, The Journal of Physical Chemistry A 103 (1999) 9573
    [54] D. Ricci, A. Bongiorno, G. Pacchioni, U. Landman, Physical Review Letters 97 (2006) 036106.
    [55] M. Mavrikakis, P. Stoltze, J.K. Nørskov, Catalysis Letters 64 (2000) 101.
    [56] T. V. W. Janssens, B. S. Clausen, B. Hvolbæk, H. Falsig, C. H. Christensen, T. Bligaard, J. K. Nørskov, Topics in Catalysis 44 (2007) 15.
    [57] R. Burch, Physical Chemistry Chemical Physics 8 (2006) 5483.
    [58] B. J. Plowman, S. K. Bhargava, A. P. O’Mullane, Analyst 136 (2011) 5107.
    [59] M. Z. Ahmad, S. Akhter, Z. Rahman, S. Akhter, M. Anwar, N. Mallik, F. J. Ahmad, Journal of Pharmacy and Pharmacology 66 (2013)634.
    [60] H. R. Luckarift, D. Ivnitski, R. Rincón, P. Atanassov, G. R. Johnson, Electroanalysis 22 (2010) 784.
    [61] X. Luo, A. Morrin, A. J. Killard, M. R. Smyth, Electroanalysis 18 (2006) 319.
    [62] Y. Xiao, F. Patolsky, E. Katz, J. F. Hainfeld, I. Willner, Science 299 (2003) 1877
    [63] H. Cai, Y. Xu, N. Zhu, P. He, Y. Fang, Analyst 127 (2002) 803.
    [64] S. Liu, H. Ju, Electroanalysis 15 (2003) 1488.
    [65] A. Heller, Nature Biotechnology 21 (2003) 631.
    [66] B. Willner, E. Katz, I. Willner, Current Opinion in Biotechnology 17 (2006) 589.
    [67] Y.M. Yan, R. Tel-Vered, O. Yehezkeli, Z. Cheglakov, I. Willner, Advanced Materials 20 (2008) 2365.
    [68] I. Willner, R. Baron, B. Willner, Advanced Materials 18 (2006) 1109.
    [69] S. Xu, B. Peng, X. Han, Biosensors and Bioelectronics 22 (2007) 1807.
    [70] O. Yehezkeli, Y.M. Yan, I. Baravik, R. Tel-Vered, I. Willner, Chemistry - A European Journal 15 (2009) 2674.
    [71] M.J. Shiddiky, A.A. Torriero, Biosensors and Bioelectronics 26 (2011) 1775.
    [72] M. J.A. Shiddiky, A. A.J. Torriero, Biosensors and Bioelectronics 26 (2011) 1775.
    [73] R. J. Gale, B. Gilbert, R. A. Osteryoung, Inorganic Chemistry 17 (1978) 2728.
    [74] D. Wei, A. Ivaska, Analytica Chimica Acta 607 (2008) 126.
    [75] P.T. Anastas, J.B. Zimmerman, Environmental Science & Technology 37 (2003) 94A.
    [76] Z. Yang, W. Pan, Enzyme and Microbial Technology 37 (2005) 19.
    [77] Z. Yang, Journal of Biotechnology 144 (2009) 12.
    [78] C. Reichardt, Chemical Reviews 1594 (1994) 2319.
    [79] S. Park, R. J. Kazlauskas, The Journal of Organic Chemistry 66 (2001) 8395.
    [80] C. Reichardt, Green Chemistry 7 (2005) 339.
    [81] J. Dupont, Journal of the Brazilian Chemical Society 15(2004) 341.
    [82] W. Y. Lou, M.H. Zong, T. J. Smith, H. Wu, J. F. Wang, Green Chemis 8 (2006) 509.
    [83] F. J Hernández-Fernández, A. P Ríos, M. Rubio, D. Gómez, G. Víllora, Journal of Chemical Technology and Biotechnology 82 (2007) 882.
    [84] A. P Ríos, F. J Hernández-Fernández, F. Tomás-Alonso, D. Gómez, G. Víllora, Process Biochemistry 43 (2008) 892.
    [85] N. Iwai, T. Tanaka, T. Kitazume, Journal of Molecular Catalysis B: Enzymatic 59 (2009) 131.
    [86] W.Y. Lou, M.H. Zong, Chirality 18 (2006) 814.
    [87] P. Lozano, T. Diego, J.P. Guegan,M. Vaultier,J.L. Iborra, Biotechnology and Bioengineering 75 (2001) 563.
    [88] R. A. Sheldon, R. M. Lau, M. J. Sorgedrager, F. Rantwijk, K. R. Seddon, Green Chemistry 4 (2002) 147.
    [89] F. Rantwijk, R. M. Lau, R. A. Sheldon, Trends in Biotechnology 21 (2003) 21.
    [90] K. D. Collins, G. W. Neilson, J. E. Enderby, Biophysical Chemistry 128 (2007) 95.
    [91] J. E. Combariza, N. R. Kestner, J. Jortner, Journal of Chemical Physics 100 (1994) 2851.
    [92] K.D. Collins, Methods 34 (2004) 300.
    [93] S. P. M. Ventura, L. D. F. Santos, J. A. Saraiva, J. A. P. Coutinho, World J Microbiol Biotechnol 28 (2012) 2303.
    [94] T. D. Diego, P. Lozano, S. Gmouh, M. Vaultier, J. L. Iborra, Biotechnology and Bioengineering 88 (2004) 916.
    [95] R. M. Lau, M. J. Sorgedrager, G. Carrea, F. Rantwijk, F. Secundo, R. A. Sheldon, Green Chemistry 6 (2004) 483.
    [96] K.W. Kim, B. Song, M.Y. Choi, M.J. Kim, Organic Letters 3 (2001) 1507.
    [97] P. Kiełbasiński, M. Albrycht, J. Łuczak, M. Mikołajczyk, Tetrahedron: Asymmetry 13 (2002) 735.
    [98] C. Thomazeau, H. O. Bourbigou, L. Magna, S. Luts, B. Gilbert, Journal of the American Chemical Society 125 (2003) 5264.
    [99] Y.Chun Yang, S.W. Dong, T. Shen, C.X. Jian, H.J. Chang, Y. Li, J.X. Zhou, Electrochimica Acta 56 (2011) 6021.
    [100] W. Sun, X. Qi, Y. Chen, S. Liu, H. Gao, Talanta 87 (2011) 106.
    [101] Y. Qiu, X. Qu, J. Dong, S. Ai, R. Han, Journal of Hazardous Materials 190 (2011) 480.
    [102] F. Xiao, J. Song, H. Gao, X. Zan, R. Xu, H. Duan, ACSnano 6 (2012) 100.
    [103] W. P. Davey, Physical Review 25 (1925) 753.
    [104] K.W. Nam, J. Song, K.H. Oh, M.J. Choo, H. Park, J.K. Park, Carbon 50 (2012) 3739.
    [105] Y. Shao, S. Zhang, C. Wang, Z. Nie, J. Liu, Y. Wang, Journal of Power Sources 195 (2010) 4600.
    [106] S.B. Aoun, Z. Dursun, T. Koga, G.S. Bang, T. Sotomura, I. Taniguchi, Journal of Electroanalytical Chemistry 567 (2004) 175.
    [107] Y. Hu, J. Jin, P. Wu, H. Zhang, C. Cai, Electrochimica Acta 56 (2010) 491.
    [108] M. Pasta, F.L. Mantia, Y. Cui, Electrochemistry Communications 19 (2012) 81.
    [109] K.E. Toghill, R.G. Compton, International Journal of Electrochemical Science 5 (2010) 1246.
    [110] M.J. Shiddiky, A.A Torriero, Biosensors and Bioelectronics 26 (2011) 1775.
    [111] D. Wei, A. Ivaska, AnalyticaChimicaActa 607 (2008) 126.
    [112] S. Cherevko, C.H. Chung, Sensors and Actuators B: Chemical 142 (2009) 216.
    [113] Y. Li, Y.Y. Song, C. Yang, X.H. Xia, Electrochemistry Communications 9 (2007) 981.
    [114] F. Xu, K. Cui, Y. Sun, C. Guo, Z. Liu,Y. Zhang, Talanta 82 (2010) 1845.
    [115] M.M. Musameh, R.T. Kachoosangi,R.G. Compton, Analyst 133 (2008) 133.
    [116] A. Rehman, X. Zeng, Accounts of Chemical Research 45 (2012) 1667.
    [117] A. Safavi, S. Momeni, Electroanalysis 22 (2010) 2848.
    [118] T. You, O. Niwa, Z. Chen, K. Hayashi, M. Tomita, S. Hirono, Analytical Chemistry 75 (2003) 5191.
    [119] J. Yuan, K. Wang, X. Xia, Advanced Functional Materials 15 (2005) 803.
    [120] L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, C. Cai, Analytical Chemistry 81 (2009) 7271.
    [121] H. Zhu, X. Lu, M. Li, Y. Shao, Z. Zhu, Talanta 79 (2009) 1446.
    [122] H. Zhu, X. Liang, J. Chen, M. Li, Z. Zhu, Talanta 85 (2011) 1592.
    [123] F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Biosensors and Bioelectronics 24 (2009) 3481.
    [124] L. Zheng, J. Zhang, J. Song, Electrochimica Acta 54 (2009) 4559.
    [125] A. Sun, J. Zheng, Q. Sheng, Electrochimica Acta 65 (2012) 64.
    [126] A. Safavi, N. Maleki, E. Farjami, Biosensors and Bioelectronics 24 (2009) 1655.
    [127] F. Y. Kong, X. R. Li, W. W. Zhao, J. J. Xu, H. Y. Chen, Electrochemistry Communications 14 (2012) 59.
    [128] F. Xiao, Y. Li, H. Gao, S. Ge, H. Duan, Biosensors and Bioelectronics 41 (2013) 417.
    [129] Q. Chen, L. Zhang, G. Chen, Analytical Chemistry 84 (2012) 171.
    [130] J. Luo, S. Jiang, H. Zhang, J. Jiang, X. Liu, Analytica Chimica Acta 709 (2012) 47.
    [131] L. Luo, L. Zhu, Z. Wang, Bioelectrochemistry 88 (2012) 156.
    [132] Y. W. Hsu, T. K. Hsu, C. L. Sun, Y. T. Nien, N. W. Pu, M. D. Ger, Electrochimica Acta 82 (2012) 152.
    [133] M. Liu, R. Liu, W. Chen, Biosensors and Bioelectronics 45 (2013) 206.
    [134] Y. Mu, D. Jia, Y. He, Y. Mo, H. L. Wu, Biosensors and Bioelectronics 26 (2011) 2948.
    [135] W. Lv, F. M. Jin, Q. Guo, Q. H. Yang, F. Kang, Electrochimica Acta 73 (2012) 129.
    [136] Y. Zhang, Y. Wang, J. Jia, J. Wang, Sensors and Actuators B: Chemical 171 (2012) 580.
    [137] Y. Zhang, F. Xu, Y. Sun, Y. Shi, Z. Wen, Z. Li, Journal of Materials Chemistry 21 (2011) 16949.
    [138] N. Qiao, J. Zheng, Microchim Acta 177 (2012) 103.
    [139] L. M. Lu, H. B. Li, F. Qu, X. B. Zhang, G. L. Shen, R. Q. Yu, Biosensors and Bioelectronics 26 (2011) 3500.
    [140] Q. Wang, X. Cui, J. Chen, X. Zheng, C. Liu, T. Xue, H. Wang, Z. Jin, L. Qiao, W. Zheng, RSC Advances 2 (2012) 6245.
    [141] J. Lu, I. Do, L. T. Drzal, R. M. Worden, I. Lee, ACSnano 2 (2008) 1825.
    [142] H. Gao, F. Xiao, C. B. Ching, H. Duan, ACS Applied Materials & Interfaces 3 (2011) 3049.
    [143] C. Zhu, Y. Fang, D. Wen, S. Dong, Journal of Materials Chemistry 21 (2011) 16911.
    [144] H. D. Jang, S. K. Kim, H. Chang, K. M. Roh, J. W. Choi, J. Huang, Biosensors and Bioelectronics 38 (2012) 184.
    [145] M. Pasta, L. Hu, F. L. Mantia, Y. Cui, Electrochemistry Communications 19 (2012) 81.
    [146] D. Liu, Q. Luo, F. Zhou, Synthetic Metals 160 (2010) 1745.
    [147] J. Ryu, K. Kim, H. S. Kim, H. T. Hahn, D. Lashmore, Biosensors and Bioelectronics 26 (2010) 602.
    [148] L. M. Lu, X. B. Zhang, G. L. Shen, R. Q. Yu, Analytica Chimica Acta 715 (2012) 99.
    [149] X. Zhang, G. Wang, W. Zhang, Y. Wei, B. Fang, Biosensors and Bioelectronics 24 (2009) 3395.
    [150] H. X. Wu, W. M. Cao, Y. Li, G. Liu, Y. Wen, H. F. Yang, S. P Yang, Electrochimica Acta 55 (2010) 3734.
    [151] C. B. M. Auley, G. G. Wildgoose, R. G. Compton, L. Shao, M. L.H. Green, Sensors and Actuators B: Chemical 132 (2008) 356.
    [152] J. Yang, L. C. Jiang, W. D. Zhang, S. Gunasekaran, Talanta 82 (2010) 25.
    [153] M. Shamsipur, M. Najafi, M. R. M. Hosseini, Bioelectrochemistry 77 (2010) 120.
    [154] C. Guo, Y. Hu, Y. Liu, Y. Mu, Y. Miao, X. Hu, Materials Chemistry and Physics 130 (2011) 10.
    [155] D. Rathod, C. Dickinson, D. Egan, E. Dempsey, Sensors and Actuators B: Chemical 143 (2010) 547.
    [156] L. Q. Rong, C. Yang, Q. Y. Qian, X. H. Xia, Talanta 72 (2007) 819.
    [157] R. M. A. Tehrani, S. Ab Ghani, Biosensors and Bioelectronics 38 (2012) 278.
    [158] Y. G. Zhou, S. Yang, Q. Y. Qian, X. H. Xia, Electrochemistry Communications 11 (2009) 216.
    [159] F. Xie, Z. Huang, C. Chen, Q. Xie, Y. Huang, C. Qin, Y. Liu, Z. Su, S. Yao, Electrochemistry Communications 18 (2012) 108.
    [160] D. Feng, F. Wang, Z. Chen, Sensors and Actuators B: Chemical 138 (2009) 539.
    [161] L.Y. Chen, X.Y. Lang, T. Fujita, M.W. Chen, Scripta Materialia 65 (2011) 17.
    [162] A. Liu, Q. Ren, T. Xu, M. Yuan, W. Tang, Sensors and Actuators B: Chemical 162 (2012) 135.
    [163] M. Tominag, Y. Taem, I. Taniguchi, Journal of Electroanalytical Chemistry 624 (2008) 1.
    [164] H. Cao, X. Sun, Y. Zhang, N. Jia, Analytical Biochemistry 430 (2012) 111.
    [165] C.H. Wu, C.H. Wang, M.T. Lee, J.K. Chang, Journal of Materials Chemistry 22 (2012) 21466.
    [166] C.Han Wang, C.H. Wu, J.W. Wu, M.T. Lee, J.K. Chang, M.D. Ger, C.L. Sun, Analyst 138 (2013) 576.
    [167] J. Ping, Y. Wang, K. Fan, J. Wu, Y. Ying, Biosensors and Bioelectronics 28 (2011) 204.
    [168] Q. Yu, Z. Shi, X. Liu, S. Luo, W. Wei, Journal of Electroanalytical Chemistry 655 (2011) 92.
    [169] Y. He, J. Zheng, K. Li, Q. Sheng, N. Qiao, Chinese Journal of Chemistry 28 (2010) 2507.
    [170] J.Y. Sun, K.J. Huang, S.F. Zhao, Y. Fan, Z.W. Wu, Bioelectrochemistry 82 (2011) 125.
    [171] K.J. Huang, Y.X. Miao, L. Wang, T. Gan, M. Yu, L.L. Wang, Process Biochemistry 47 (2012) 1171.
    [172] X. Liu, H. Feng, J. Zhang, R. Zhao, X. Liu, D. K.Y. Wong, Biosensors and Bioelectronics 32 (2012) 188.
    [173] J. Wan, J. Bi, P. Du, S. Zhang, Analytical Biochemistry 386 (2009) 256.
    [174] Q. Xi, X. Chen, D. G. Evans, W. Yang, Langmuir 28 (2012) 9885.
    [175] S.J. Li, Y.F. Shi, Lin Liu, L.X. Song, H. Pang, J.M. Du, Electrochimica Acta 85 (2012) 628.
    [176] Y. Zhang, Y. Liu, J. He, P. Pang, Y. Gao, Q. Hu, Electrochimica Acta 90 (2013) 550.
    [177] Y. Fan, X. Yang, C. Yang, J. Liu, Electroanalysis 24 (2012) 1334.
    [178] Z. Gu, S. Yang, Z. Li, X. Sun, G. Wang, Y. Fang, J. Liu, Analytica Chimica Acta 701 (2011) 75.
    [179] K.J. Huang, D.J. Niu, X. Liu, Z.W. Wu, Y. Fan, Y.F. Chang, Y.Y. Wu, Electrochimica Acta 56 (2011) 2947.
    [180] B. Zhang, Y. Cui, H. Chen, B. Liu, G. Chen, D. Tang, Electroanalysis 23 (2011) 1821.
    [181] X. Liu, X. Xu, H. Zhu, X. Yang, Analytical Methods 5 (2013) 2298.
    [182] M.M Liu, W.T. Wei, Y.Z. Lu, H.B. Wu, W. Chen, Chinese Journal of Analytical Chemistry 40 (2012) 1477.
    [183] J.M. You, D. Kim, S.K. Kim, M.S. Kim, H.S. Han, S. Jeon, Sensors and Actuators B: Chemical 178 (2013) 450.
    [184] S. Guo, D. Wen, Y. Zhai, S. Dong, E. Wang, ACSNANO 4 (2010) 3959.
    [185] J.D. Qiu, L. Shi, R.P. Liang, G.C. Wang, X.H. Xia, Chemistry - A European Journal 18 (2012) 7950.
    [186] F. Xu, Y. Sun, Y. Zhang, Y. Shi, Z. Wen, Z. Li, Electrochemistry Communications 13 (2011) 1131.
    [187] Y. Tang, G. P. Kotchey, H. Vedala, A. Star, Electroanalysis 23 (2011) 870.
    [188] J.M. You, D. Kim, S. Jeon, Electrochimica Acta 65 (2012) 288.
    [189] F. Xiao , Y. Li , X. Zan , K. Liao , R. Xu, H. Duan, Advanced Functional Materials 22 (2012) 2487.
    [190] L. Li, Z. Du, S. Liu, Q. Hao, Y. Wang, Q. Li, T. Wang, Talanta 82 (2010) 1637.
    [191] X. Liu, H. Zhu, X. Yang, Talanta 87 (2011) 243.
    [192] Y. Ye, T. Kong, X. Yu, Y. Wu, K. Zhang, X. Wang, Talanta 89 (2012) 417.
    [193] L. Zheng, D. Ye, L. Xiong, J. Xu, K. Tao, Z. Zou, D. Huang,
    [194] A. A. Ensafin, M.Jafari–Asl, B.Rezaei, Talanta 103 (2013) 322.
    [195] M. Liu, R. Liu, W. Chen, Biosensors and Bioelectronics 45 (2013) 206.
    [196] F. Xu, M. Deng, G. Li, S. Chen, L. Wang, Electrochimica Acta 88 (2013) 59.
    [197] S. Palanisamy, S.M. Chen, R. Sarawathi, Sensors and Actuators B: Chemical 166– 167 (2012) 372.
    [198] Y. Huang, S. Fong, Y. Li, Journal of Electroanalytical Chemistry 690 (2013) 8.
    [199] Y. Zhang, X. Sun, L. Zhu, H. Shen, N. Jia, Electrochimica Acta 56 (2011) 1239.
    [200] J.H. Yang, N. Myoung, H.G. Hong, Electrochimica Acta 81 (2012) 37.
    [201] L. Fan, Q. Zhang, K. Wang, F. Li, L Niu, J. Mater. Chem., 22 (2012) 6165.
    [202] H.W. Yang, M.Y. Hua, S.L. Chen, R.Y. Tsai, Biosensors and Bioelectronics 41 (2013) 172.
    [203] T.Y. Huang, J.H. Huang, H.Y.Wei, K.C. Ho, C. W. Chu, Biosensors and Bioelectronics 43 (2013) 173.
    [204] H.C. Chen, Y.H. Chen, S.L. Chen, Y.T. Chern, R.Y. Tsai, M.Y. Hua, Biosensors and Bioelectronics 46 (2013) 84.
    [205] F. Xi, D. Zhao, X. Wang, P. Chen, Electrochemistry Communications 26 (2013) 81.
    [206] S. Woo, Y.R. Kim, T. D. Chung, Y. Piao, H. Kim, Electrochimica Acta 59 (2012) 509.
    [207] Y. Chen, Y. Li, D. Sun, D. Tian, J. Zhang, J. J. Zhu, Journal of Materials Chemistry 21 (2011) 7604.
    [208] C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu, Analytical Chemistry 2009, 81, 2378.
    [209] Q. Zhang, S. Wu, L. Zhang, J. Lu, F. Verproot, Y. Liu, Z. Xing, J. Li, X. M. Song, Biosensors and Bioelectronics 26 (2011) 2632.
    [210] H. Gu, Y. Yu, X. Liu, B. Ni, T. Zhou, G. Shi, Biosensors and Bioelectronics 32 (2012) 118.
    [211] M. H. Yang, B. G. Choi, H. Park, W. H. Hong, S. Y. Lee, T. J. Park, Electroanalysis 22 (2010) 1223.
    [212] M. H. Yang, B. G. Choi, H. Park, T. J. Park, W. H. Hong, S. Y. Lee, Electroanalysis 23 (2011) 850.
    [213] M. Tasviri, S. Ghasemi, H. Ghourchian, M. R. Gholami, Journal of Solid State Electrochemistry 17 (2013) 183.
    [214] Y. Jiang, Q. Zhang, F. Li, L. Niu, Sensors and Actuators B: Chemical 161 (2012) 728.
    [215] J. Li, J. Yu, F. Zhao, B. Zeng, Analytica Chimica Acta 587 (2007) 33.
    [216] X. Zeng, X. Li , L. Xing, X. Liu, S. Luo, W. Wei, B. Kong, Y. Li, Biosensors and Bioelectronics 24 (2009) 2898.
    [217] X. Liu, X. Zeng, N. Mai, Y. Liu, B. Kong, Y. Li, W. Wei, S. Luo, Biosensors and Bioelectronics 25 (2010) 2675.
    [218] F. Jia, C. Shan, F. Li, L. Niu, Biosensors and Bioelectronics 24 (2008) 945.
    [219] F. Li , Z. Wang, C. Shan, J. Song, D. Han, L. Niu, Biosensors and Bioelectronics 24 (2009) 1765.
    [220] J. Li, F. Zhao, G. Wang, Z. Gui, F. Xiao, B. Zeng, Electroanalysis 21 (2009) 150.
    [221] D. Ragupathy, A. I. Gopalan, K.P. Lee, Electrochemistry Communications 11 (2009) 397.
    [222] R. Gao, J. Zheng, Electrochemistry Communications 11 (2009) 608.
    [223] Y. Zhang, G. Guo, F. Zhao, Z. Mo, F. Xiao, B. Zeng, Electroanalysis 22 (2010) 223.
    [224] X. Chu, B. Wu, C. Xiao, X. Zhang, J. Chen, Electrochimica Acta 55 (2010) 2848.
    [225] X. Wu, F. Zhao, J. R. Varcoe, A. E. Thumser, C. A. Ross, R. C.T. Slade, Bioelectrochemistry 77 (2009) 64.
    [226] Y. Zhang, Y. Shen, D. Han, Z. Wang, J. Song, F. Li, L. Niu, Biosensors and Bioelectronics 23 (2007) 438.
    [227] Y. Liu, L. Liu, S. Dong, Electroanalysis 19 (2007) 55.
    [228] A. Gutes, C. Carraro, R. Maboudian, Biosensors and Bioelectronics 33 (2012) 56.
    [229] J. Zheng, Y. He, Q. Sheng, H. Zhanga , Journal of Materials Chemistry 21 (2011) 12873.
    [230] G. Zhiguo, Y. Shuping, L. Zaijun, S. Xiulan, W. Guangli, F. Yinjun, L. Junkang, Electrochimica Acta 56 (2011) 9162.
    [231] X. Zhong, R. Yuan, Y. Q. Chai, Sensors and Actuators B: Chemical 162 (2012) 334.
    [232] J. Yang, S. Deng, J. Lei, H. Ju, S. Gunasekaran, Biosensors and Bioelectronics 29 (2011) 159.
    [233] S. Bharathi, M. Nogami, Analyst 126 (2001) 1919.
    [234] S. A. Miscoria, J. Desbrieres, G. D. Barrera, P. Labb´e, G. A. Rivas, Analytica Chimica Acta 578 (2006) 137,
    [235] X. L. Luo, J. J. Xu, Y. Du, H. Y. Chen, Analytical Biochemistry 334 (2004) 284.
    [236] S. Liu, H. Ju, Biosensors and Bioelectronics 19 (2003) 177.
    [237] B. Y. Wu, S. H. Hou, F. Yin, J. Li, Z. X. Zhao, J. D. Huang, Q. Chen, Biosensors and Bioelectronics 22 (2007) 838.
    [238] H. Wang, X. Wang, X. Zhang, X. Qin, Z. Zhao, Z. Miao, N. Huang, Q. Chen, Biosensors and Bioelectronics 25 (2009) 142.
    [239] M. C. Rodríguez, G. A. Rivas, Electroanalysis 16 (2004) 1717.
    [240] M. H. Xue, Q. Xu, M. Zhou, J. J. Zhu, Electrochemistry Communications 8 (2006) 1468.
    [241] B. Zheng, S. Xie, L. Qian, H. Yuan, D. Xiao, M. M.F. Choi, Sensors and Actuators B: Chemical 152 (2011) 49.
    [242] X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, Y. Lin, Biosensors and Bioelectronics 25 (2009) 901.
    [243] S. Liu, J. Tian, L. Wang, Y. Luo, W. Lu, X. Sun, Biosensors and Bioelectronics 26 (2011) 4491.
    [244] B. Unnikrishnan, Se. Palanisamy, S. M. Chen, Biosensors and Bioelectronics 39 (2013) 70.
    [245] H. W. Yang , M. Y. Hua, S. L. Chen, R. Y. Tsai, Biosensors and Bioelectronics 41 (2013) 172.
    [246] J. Lu, L. T. Drzal, R. M. Worden, I. Lee, Journal of Materials Chemistry 19 (2007) 6240.
    [247] P. Wu, Q. Shao, Y. Hu, J. Jin, Y. Yin, H. Zhang, C. Cai, Electrochimica Acta 55 (2010) 8606.
    [248] B. Y. Wu, S. H. Houb, F. Yin, Z. X. Zhao, Y. Y. Wang, X. S. Wang, Q. Chen, Biosensors and Bioelectronics 22 (2007) 2854.
    [249] S.G. Wang, Q. Zhang, R. Wang, S.F. Yoon, J. Ahn , D.J. Yang, J.Z. Tian, J.Q. Li, Q. Zhou, Electrochemistry Communications 5 (2003) 800.
    [250] R. B. Rakhi, K. Sethupathi, S. Ramaprabhu, The Journal of Physical Chemistry B 113 (2009) 3190.
    [251] Y. Wang, W. Wei, X. Liu, X. Zeng, Materials Science and Engineering C 29 (2009) 50.
    [252] H. Zhang, Z. Meng, Q. Wang, J. Zheng, Sensors and Actuators B: Chemical 158 (2011) 23.
    [253] K. Y. Kwon, S. B. Yang, B. S. Kong, J. Kim, H. T. Jung, Carbon 48 (2010) 4504.
    [254] X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, Analytical Biochemistry 369 (2007) 71.
    [255] S. Chawla, C. S. Pundir, Biosensors and Bioelectronics 26 (2011) 3438.
    [256] L. Fang, W. Li, Y. Zhou, C.C. Liu, Sensors and Actuators:B 137 (2009) 235.
    [257] H.C. Chien, T.C. Chou, Electroanalysis 23 (2011) 402.
    [258] H.C. Chien, T.C.Chou, Electroanalysis 22 (2010) 688.
    [259] W. Tsugawa, F. Ishimura, K. Ogawa, K. Sode, Electrochemistry 68 (2000) 869.
    [260] K. Ogawa, D. Stöllner, F. Scheller, A. Warsinke, F. Ishimura, W. Tsugawa, S. Ferri, K. Sode, Analytical and Bioanalytical Chemistry 373 (2002) 211.

    QR CODE
    :::