跳到主要內容

簡易檢索 / 詳目顯示

研究生: 任正隆
Chang-Lung Jen
論文名稱: 吊車系統利用視覺回授之滑動模式控制
Sliding-Mode Control of Overhead Crane Systems Using Visual Feedback
指導教授: 徐國鎧
Kuo-Kai Shyu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 71
中文關鍵詞: 滑動模式控制滑動平面欠驅動視覺回授抗搖晃
外文關鍵詞: sliding-mode control, sliding surface, underactu
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對吊車系統(Overhead Crane System),提出基於滑動模式控制並利用視覺回授之定位與抗搖晃控制。由於吊車系統本身具有欠驅動(Underactuated)、複雜之非線性動態、難以模型化之參數誤差以及摩擦力等因素,造成控制之精確度與穩定性不足。另外,很難以較少的驅動器,同時實現軌跡追蹤控制快速定位及最小的負載晃動的性能。本文中提出一耦合台車動態(Trolley Dynamics)與負載搖晃動態(Load-swing Dynamics)之滑動平面(Sliding Surface),利用滑動模式(Sliding-Mode)控制器的設計,將負載搖晃之動態引入阻尼(Damping)效果以消除擺動;另外,所提出的滑動模式控制並不需精確動態模型,即可提供足夠的強健性以克服複雜之非線性動態、負載變化與摩擦力等非理想因素,確保精確的定位達成期望之控制性能,並基於視覺回授架構所具有的量測、辨識、位置追蹤等特性,提升吊車絕對位置之參考輸入軌跡追蹤能力。模擬與實驗結果皆顯示出本文所提出之控制法則在貨物運送過程中,可確保漸進穩定之滑動平面、精確之台車位置追蹤以及優異之抗搖晃效果。


    In this thesis, we present an anti-swing control scheme based on the sliding-mode control (SMC) for an overhead crane system using visual feedback. Since the overhead crane system is underactuated and highly nonlinear, the system performance is usually deteriorated by the system unmodelled-parameter errors and friction. On the other hand, to minimize load-swing angle and maximize the speed of load transfer are hard to consider and implement simultaneously by using fewer actuators. A sliding surface coupled with trolley and load-swing dynamics is designed to stabilize the load-swing dynamics by injecting the damping effect into the dynamics of the crane system. The proposed control law provides the robustness to unknown load variation and friction without an accurate dynamical model. Using visual feedback can improve the tracking capacity of absolute position. Simulations and Experiments show that the proposed control scheme ensures the asymptotically stability of sliding surface, precise trolley positioning, and good performance of the load-swing dynamics during the load transfer.

    中文摘要 I 英文摘要 II 誌謝 III 目 錄 IV 圖 目 錄 VI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.4 章節架構 4 第二章 視覺伺服吊車系統架構 5 2.1 系統架構 5 2.2 欠驅動系統特性 6 2.3影像特徵追蹤 6 2.3.1簡介 6 2.3.2 攝影機模型與投影幾何學的簡介 6 2.3.3影樣追蹤 8 2.3.4 影像處理流程與測試 9 第三章 吊車系統之滑動模式控制器設計 12 3.1 前言 12 3.2系統與問題描述 12 3.3基於滑動模式之抗搖晃控制設計 14 3.3.1 負載搖晃動態之穩定性分析 15 3.3.2 滑動模式控制器設計 17 3.4 模擬結果與討論 18 3.4.1 模擬案例 18 3.4.2 分析與討論 22 第四章 考慮負載變動與摩擦力之滑動模式控制 23 4.1 前言 23 4.2系統與問題描述 23 4.2.1考量負載變化之修正 24 4.2.2考量磨擦力之修正 25 4.3 基於滑動模式之抗搖晃控制設計 27 4.4 模擬結果與討論 30 4.4.1 模擬案例 30 4.4.2 分析與討論 37 第五章 吊車系統使用視覺回授之實務驗證 38 5.1 實驗機構與設備 38 5.2 使用實驗用吊車系統參數進行模擬 40 5.2.1模擬案例 40 5.2.2 分析與討論 46 5.3 實驗結果與討論 47 5.3.1 實驗案例 47 5.3.2 分析與討論 54 第六章 結論與未來展望 56 參考文獻 58 作者簡歷 61 發表著作 62

    [1] W. Wang, J. Yi, D. Zhao and D. Liu, “Design of a stable sliding-mode
    controller for a class of second-order underactuated systems,” IEE Proc. -
    Control Theory App. , vol. 151, no. 6, pp. 683-690, 2004.
    [2] G. Bartonlini, A. Pisano and E. Usai, “Second-order sliding-mode
    control of container cranes,” Automatica, vol. 38, no. 10, pp. 1783-1790,
    2002.
    [3] Sakawa and Y. Shindo, “Optimal control of container cranes,” Automatica,
    vol. 18, no. 3, pp. 257-266, 1982.
    [4] M.A. Karkoub and M. Zribi, “Modelling and energy based nonlinear control
    of crane lifters,” IEE Proc.-Control Theory Application, vol. 149, no. 3,
    pp. 209-216 , 2002.
    [5] Y. Fang, W. E. Dixon, D.M. Dawson and E. Zergeroglu, “Nonlinear coupling
    control laws for an underactuated overhead crane system,” IEEE/ASME
    Transaction on Mechatron, vol.8, no. 3, pp. 418-423, 2003.
    [6] A. Giua, C. Seatzu and G. Usai, “Observer-controller design for
    cranes via Lyapunov equivalence,” Automatica, vol. 35, no. 4, pp. 669-
    678, 1999.
    [7] G. Corriga, A. Giua and G. Usai, “An implicit gain-scheduling controller
    for cranes,” IEEE Trans. Contr. Syst., vol. 6, no. 1, pp. 15-20, 1998.
    [8] A. Piazzi and A. Visioli, “Optimal dynamic inversion based control
    of an overhead crane,” IEE Proc-Control Theory Application, vol. 149, no.
    5, pp. 405-411, 2002.
    [9] J.J. Hamalinen, A. Marttinen, L. Baharova and J. Virkkunen, “Optimal path
    planning for a trolley crane fast and smooth transfer of load,” IEE Proc.-
    Control Theory Application, vol. 142, no. 1, pp. 51-57, 1995.
    [10] B. d’Andrea and J. M. Coron, “Exponential stabilization of an overhead
    crane with flexible cable via a back-stepping approach,” Automatica,
    vol. 36, no. 4, pp. 587-593, 2000.
    [11] X. Zhang, B. Gao and H. Chen, “Nonlinear controller for a gantry crane
    based on partial feedback linearization,” Proceedings of the 2005 IEEE
    International Conference on Control and Automations, pp. 1074–1078.
    [12] H. H. Lee, “Modeling and control of three-dimensional overhead crane,”
    ASME Transactions, Journal of Dynamic Systems, Measurement, and Control,
    vol. 120, pp. 471–476, 1998.
    [13] H.-H. Lee, “A new motion-planning scheme for overhead cranes with high-
    speed hoisting,” ASME Transactions, Journal of Dynamic Systems,
    Measurement, and Control, vol. 126, pp. 359–364, 2004.
    [14] H. H. Lee, “Motion planning for three-dimensional overhead cranes with
    high-speed load hoisting,” Int. J. Control, vol. 78, no. 12, pp. 875-
    886, 2005.
    [15] H. H. Lee, “A new design approach for the anti-swing trajectory control
    of overhead cranes with high-speed hosting,” Int. J. Control, vol. 77,
    no. 10, pp. 931-940, 2004.
    [16] C. T. Johnson and R. D. Lorenz, “Experimental identification of friction
    and its compensation in precise, position controlled mechanisms,” IEEE
    Trans. Industry Application, vol. 28, no. 6, pp. 1392-1398, 1992.
    [17] R. M. Hischorn and G. Miller, “Control of Nonlinear system with
    friction,” IEEE Trans. Contr. Tech., vol. 28, no. 6, pp. 588-595, 1992.
    [18] M. Iwasaki, H. Takei and N. Matsui, “GMDH-Based modeling and feedforward
    compensation for nonlinear fiction in table systems,” IEEE Transactions
    on Industrial Electronics, vol. 50, no. 6, pp.1172-1178, 2003.
    [19] T. Shen, K. Tamura and H. Kaminaga, “Robust nonlinear control of
    parametric uncertain systems with unknown friction and its application to
    pneumatic control value,” Journal of Dynamic System, Measurement, and
    Control, vol. 122, no. 2, pp. 257-262, 2000.
    [20] T. Matsuo, R. Yoshino, H. Suemitsu, and K. Nakano, “Nominal performance
    recovery by PID+Q controller and its application to antisway control of
    crane lifter with visual feedback,” IEEE Tran. Contr. Sys. Tech., vol.
    12, no. 1, pp.156-166, 2004.
    [21] T. Matsuo and K. Nakano, “Robust stabilization of closed-loop systems by
    PID+Q controller,” Int. J. Control, vol. 70, no. 4, pp. 631-650, 1998.
    [22] A. C. Sanderson, and L. E. Weiss, “Image-based visual servo control
    using relational graph error signals,” Proceedings of the IEEE
    International Conference on Robotics and Automation, pp. 1074-1077, 1980.
    [23] S. Hutchinson, G. Hager and P. Corke, “A tutorial on visual servo
    control,” IEEE Trans. Robotics Automat., vol. 12, no.5, pp. 651–670,
    Oct. 1996.
    [24] M. Reyhanoglu, A. Schaft, N. H. McClamroch and I. Kolmanovsky, “Dynamics
    and control of a class of underactuated mechanical systems,” IEEE Tran.
    Automatic Control, vol. 44, no. 9, pp.1663-1671, 1999.
    [25] F. Bullo, N. E. Leonard and A. D. Lewis, “Controllability and motion
    algorithms for underactuated Lagrangian systems on Lie Groups,” IEEE
    Tran. Automatic Control, vol. 45, no. 8, pp. 1437-1454, 2000.
    [26] F. Bullo and K. M. Lynch, “Kinematic controllability for decoupled
    trajectory planning in underactuated mechanical systems,” IEEE Tran.
    Robotics and Automation, vol. 17, no. 4, pp. 402-412, 2001.
    [27] Z. Sun, S. S. Ge and T.H Lee, “Stabilization of underactued mechanical
    systems: a non-regular backstepping approach,” Int. J. Control, vol. 74,
    no. 11, pp. 1045-1051, 2001.
    [28] J. Á. Acosta, R. Ortega, A. Astolfi and A. D. Mahindrakar,
    “Interconnection and Damping Assignment Passivity-Based Control of
    Mechanical Systems With Underactuation Degree One,” IEEE Tran. Automatic
    Control, vol. 50, no. 12, pp.1936-1955, 2005.
    [29] A. Shiriaev, J. W. Perram and C. Canudas-de-Wit, “Constructive Tool for
    Orbital Stabilization of Underactuated Nonlinear Systems: Virtual
    Constraints Approach,” IEEE Tran. Automatic Control, vol. 50, no. 8,
    pp.1164-1176, 2005.
    [30] R. Jain, R. Kasturi and B. G.. Schunck, MachineVision, McGraw-Hall, Inc.,
    1995.
    [31] H. K. Khalil, Nonlinear systems, 3rd Edition, Prentice Hall, 2002.

    QR CODE
    :::