| 研究生: |
汪彥廷 Yan-Ting Wang |
|---|---|
| 論文名稱: | Sensor Code-based Smart Tag Embedded in Concrete for Seepage Sensing Caused by Cracks |
| 指導教授: | 林子軒 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 滲水感測 、結構健康監測 、無線射頻辨識系統 、3D列印技術 |
| 外文關鍵詞: | Seepage sensing, Structure Health Monitoring |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當混凝土結構物產生裂縫後,經過長期雨淋之後常有滲水之情況發生,此情況也將遭成混凝土結構物內鋼筋之鏽蝕,更嚴重將影響到整體混凝土結構物之強度。在過去已有許多非破壞監測方法及研究來感測混凝土內部之濕度,然而,常遇見之問題有感測儀器昂貴、需要利用纜線連接、需更換電池等。這些問題使得人力及設備維修成本增加,且若結構物本身建於環境不佳人不易到達之位置,將造成監測人員在監測時的工作危險增加。
本論文研究提出以Sensor code為基礎的特高頻無線智慧濕度感測器應用於因混凝土裂縫之滲水感測系統,此系統也將透過破壞指標的方式作為混凝土是否有滲水的判斷機制。希望能透過此研究提供另一種感測系統用於未來之結構健康監測上並解決上述所提出之問題。此研究也提出了以Poly Lactic Acid (PLA)為原料製成3D列印保護殼,提供感測器於混凝土內抵抗高鹼性環境及外力之能力。感測器在黏貼於3D列印保護殼內情況下埋入混泥土圓柱試體內,最遠達到3公尺的感測距離。而在具有鋼筋之一般常用配比之混凝土梁內雖感測距離下降,其感測距離仍達到50公分。在兩種試體情況下,本論文提出之滲水感測機制皆證明為有效的,且其判斷滲水之可信度極高。然而,其中訊號強度及頻率破壞指標尚不能作為判斷機制之一,未來仍須透過修正破壞指標及進行更多實驗來增進其判斷能力。
Water penetration of concrete due to cracking often causes reinforcement corrosion and degradation of the strength of the concrete structure. This thesis, therefore, proposes and tests a sensor code-based UHF RFID smart tag seepage sensing system. Similar sensor code-based smart tags have been applied in many fields, but never previously embedded in concrete for seepage detection. This research also proposes using 3D-printed cases made of Poly Lactic Acid (PLA) to protect smart tags from outer force impact and high alkaline environment. Experiments that involved embedding this case in a cylindrical concrete found that it provided excellent protection under compression, while the maximum read range of the smart tag from within the case was more than 3 meters, i.e., 10 times farther than the uncased tag achieved. In further experiments, 3D-printed cases with smart tags attached inside were embedded in a general beam, with reinforcement bars included. The read range decreased but still got a minimum promising read range of 50 cm, which is still a feasible distance for long-distance monitoring. According to the results, the sensor code damage index indicates the appearance of the seepage with high accuracy, in both cylindrical concrete and beam specimen. However, the RSSI and frequency index fails to be as a sensing indicator. More specimens should be tested and the damage index should be revised to improve the sensing mechanism. In sum, the results of the main experiment indicate that the smart tag’s sensor code damage index can reflect the effect of water seepage due to cracks in concrete effectively.
1. Strangfeld, Christoph, Sergej Johann, Maximilian Müller, and Matthias Bartholmai. Embedded passive RFID-based sensors for moisture monitoring in concrete. in 2017 IEEE SENSORS. 2017. IEEE.
2. Zhou, Shuangxi, Fangming Deng, Lehua Yu, Bing Li, Xiang Wu, and Baiqiang Yin, A novel passive wireless sensor for concrete humidity monitoring. Sensors, 2016. 16(9): p. 1535.
3. Kurs, André, Aristeidis Karalis, Robert Moffatt, J. D. Joannopoulos, Peter Fisher, and Marin Soljačić, Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science, 2007. 317(5834): p. 83-86.
4. Zhou, Shuangxi, Wei Sheng, Fangming Deng, Xiang Wu, and Zhihui Fu, A Novel Passive Wireless Sensing Method for Concrete Chloride Ion Concentration Monitoring. Sensors, 2017. 17(12): p. 2871.
5. Liu, Yongsheng, Fangming Deng, Yigang He, Bing Li, Zhen Liang, and Shuangxi Zhou, Novel concrete temperature monitoring method based on an embedded passive RFID smart tag. Sensors, 2017. 17(7): p. 1463.
6. Leon-Salas, Walter D and Ceki Halmen, A RFID sensor for corrosion monitoring in concrete. IEEE Sensors Journal, 2015. 16(1): p. 32-42.
7. Huang, Haiying, Flexible wireless antenna sensor: A review. IEEE sensors journal, 2013. 13(10): p. 3865-3872.
8. Yagi, K, N Sato, Y Sato, K Tamakawa, D Minkov, and T Shoji, Detection and evaluation of the depth of surface cracks in conductive materials by using a loop antenna. Applied Physics A, 2003. 77(3-4): p. 461-468.
9. Mohammad, I, V Gowda, H Zhai, and H Huang, Detecting crack orientation using patch antenna sensors. Measurement Science and Technology, 2011. 23(1): p. 015102.
10. Xu, X and H Huang, Multiplexing passive wireless antenna sensors for multi-site crack detection and monitoring. Smart Materials and Structures, 2011. 21(1): p. 015004.
11. Caizzone, Stefano, Emidio DiGiampaolo, and Gaetano Marrocco, Wireless crack monitoring by stationary phase measurements from coupled RFID tags. IEEE Transactions on Antennas and Propagation, 2014. 62(12): p. 6412-6419.
12. Kalansuriya, Prasanna, Rahul Bhattacharyya, Sanjay Sarma, and N Karmakar. Towards chipless RFID-based sensing for pervasive surface crack detection. in 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA). 2012. IEEE.
13. Yi, Xiaohua, Terence Wu, Yang Wang, and Manos M Tentzeris, Sensitivity modeling of an RFID-based strain-sensing antenna with dielectric constant change. IEEE Sensors Journal, 2015. 15(11): p. 6147-6155.
14. Occhiuzzi, C, C Paggi, and G Marrocco, Passive RFID strain-sensor based on meander-line antennas. IEEE Transactions on Antennas and Propagation, 2011. 59(12): p. 4836-4840.
15. Merilampi, Sari, Toni Björninen, Leena Ukkonen, Pekka Ruuskanen, and Lauri Sydänheimo, Embedded wireless strain sensors based on printed RFID tag. Sensor Review, 2011. 31(1): p. 32-40.
16. Rakibet, Osman O, Christina V Rumens, John C Batchelor, and Simon J Holder, Epidermal passive RFID strain sensor for assisted technologies. IEEE Antennas and Wireless Propagation Letters, 2014. 13: p. 814-817.
17. Hasani, M, A Vena, L Sydänheimo, L Ukkonen, and MM Tentzeris, Implementation of a dual-interrogation-mode embroidered RFID-enabled strain sensor. IEEE Antennas and Wireless Propagation Letters, 2013. 12: p. 1272-1275.
18. Kim, Jiseok, Zheng Wang, and Woo Soo Kim, Stretchable RFID for wireless strain sensing with silver nano ink. IEEE Sensors Journal, 2014. 14(12): p. 4395-4401.
19. Caccami, MC and G Marrocco. Electromagnetic characterisation of self-tuning UHF RFID tags for sensing application. in 2016 IEEE International Symposium on Antennas and Propagation (APSURSI). 2016. IEEE.
20. Bartholmai, Matthias, Sergej Johann, Michael Kammermeier, Maximilian Müller, and Christoph Strangfeld. RFID sensor systems embedded in concrete–systematical investigation of the transmission characteristics. in Proceedings of the 8th European Workshop on Structural Health Monitoring, Bilbao, Spain. 2016.
21. Jeong, Seung-Hwan and Hae-Won Son, UHF RFID tag antenna for embedded use in a concrete floor. IEEE Antennas and Wireless Propagation Letters, 2011. 10: p. 1158-1161.
22. Bartholmai, Matthias, Sergej Johann, Michael Kammermeier, Maximilian Müller, and Christoph Strangfeld. Transmission characteristics of RFID sensor systems embedded in concrete. in 2016 IEEE SENSORS. 2016. IEEE.
23. Kallonen, Tommi and Jari Porras. Embedded RFID in product identification. in 5th Workshop on Applications of Wireless Communications. 2007. Citeseer.
24. Johann, Sergej, Christoph Strangfeld, Maximilian Müller, Björn Mieller, and Matthias Bartholmai, RFID sensor systems embedded in concrete–requirements for long–term operation. Materials Today: Proceedings, 2017. 4(5): p. 5827-5832.
25. Lesthaeghe, Tyler J, Samuel Frishman, Stephen D Holland, and Terry J Wipf, RFID tags for detecting concrete degradation in bridge decks. 2013.
26. Chen, Zhongbin, Fangming Deng, and Xiang Wu. A passive rfid smart tag for intelligent concrete temperature control. in 2015 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering. 2015. Atlantis Press.
27. Kang, Julian H and Jasdeep Gandhi, Readability test of RFID temperature sensor embedded in fresh concrete. Journal of Civil Engineering and Management, 2010. 16(3): p. 412-417.
28. Laheurte, Jean-Marc, Aladdin Kabalan, Houssam Retima, Eric Piedallu, Fulvio Michelis, and Bérengère Lebental, Embedded uhf rfid tag for durability monitoring in concrete. Wireless Sensor Network, 2016. 8(7): p. 137-144.
29. Murthy, SGN. Batteryless Wireless RFID based embedded sensors for long term monitoring of reinforced concrete structures. in Proceedings of the International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE), Berlin, Germany. 2015.
30. Materer, Nicholas, Paul Field, Nicholas Ley, Ahmad Razzaghi Soufiani, Dane Scott, Tyler Ley, and Allen Apblett, Passive wireless detection of corrosive salts in concrete using wire-based triggers. Journal of Materials in Civil Engineering, 2013. 26(5): p. 918-922.
31. Occhiuzzi, Cecilia, Stefano Caizzone, and Gaetano Marrocco, Passive UHF RFID antennas for sensing applications: Principles, methods, and classifcations. IEEE Antennas and Propagation Magazine, 2013. 55(6): p. 14-34.