跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊謦寧
Ching-Ning Yang
論文名稱: Black-TiO2提升介電質放電生成臭氧之效率探討
指導教授: 張木彬
Moo-Been Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 72
中文關鍵詞: 臭氧光觸媒二氧化鈦改質
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臭氧(O3) 具強氧化能力和無殘留污染特性,近年來在科學技術和日常生活的許多領域中也被廣泛應用,包括化學合成、半導體表面處理、水消毒、食品加工和醫療等。然現今市售臭氧機價格依然偏高,耗能也大,此為瓶頸所在。二氧化鈦 (TiO2) 作為光觸媒時,僅吸收紫外光,目前已採用幾種方法來將TiO2吸收光譜擴展到可見光範圍,例如在氫氣氣氛下以高溫高壓下改質,然而,眾所周知,使用氫氣並不安全,需要特殊設備做維護。本研究發展以氮氣改質黑色的TiO2 (TiO2-B),此與在氫氣氣氛下製備的black-TiO2有相同的性能。改質後的二氧化鈦(N-TiO2-B)用於結合電漿系統進行臭氧合成,藉由觸媒參數機制及反應器設計開發新穎之高能效臭氧生成反應器。研究結果顯示填充N-TiO2-B有最高之臭氧產率53.9 gO3/m3能效高達509 gO3/kWh,與未改質前相比提升約12%,且有良好穩定度。使用管狀反應管相比填充床反應管有較小的放電間隙,且設備較簡易,本研究發展以第一階段改質之N-TiO2-B光觸媒塗佈在管狀反應器,其最佳能效為346 g/kWh,雖不及第一階段之能效,但仍優於大部分研究,因此將觸媒塗佈於管狀反應管進行放電可有效提升電漿觸媒系統之效能,以優化臭氧生成反應器。


    With a strong oxidizing capability, ozone (O3) is a non-residual decontamination agent. In recent years, ozone has been widely used in many areas such as chemical synthesis, semiconductor surface treatment, water disinfection, food processing and medical treatment. However, ozone generators on the market are expensive and require a lot of energy to operate, which is the bottleneck for the wide application. TiO2 is a multifunctional material with various applications such as solar cells and pollutant removal. However, due to its large energy gap (3.0-3.2 eV), TiO2 can only absorb ultraviolet light, resulting in low photocatalytic efficiency. Several methods have been used to extend the absorption spectrum of TiO2 to the range of visible light, such as thermal treatment under a hydrogen atmosphere. However, it is well known that working with hydrogen is dangerous and requires special maintenance. In this study, we prepared N-TiO2-B by calcining UR-LTiO2 at 550°C under a nitrogen atmosphere, which has the same properties as black-TiO2 prepared under hydrogen atmosphere. N-TiO2-B prepared is used for ozone synthesis in combination with a plasma system to develop a novel and energy efficient ozone generation reactor by means of optimizing catalyst parameter and reactor design. The results show that N-TiO2-B as a catalyst has the highest ozone yield of 53.9 gO3/m3 with an energy efficiency of 509.32 gO3/kWh, which is about 12% higher than that before the nitrogen treatment and has a good stability. In this study, the best energy efficiency of 346 g/kWh is achieved by coating N-TiO2-B photocatalyst in the cylinder reactor, which was not as good as the packed-bed reactor energy efficiency, but still better than most studies. Therefore, this catalyst can effectively improve the performance of the plasma to enhance the ozone generation rate.

    第一章 前言 1 1.1研究緣起 1 1.2研究目的 2 第二章 文獻回顧 4 2.1臭氧概述 4 2.2臭氧生成技術 5 2.2.1紫外光照射法 5 2.2.2電解 7 2.2.3電漿 8 2.3電漿技術用於臭氧生成 12 2.4電漿結合觸媒之應用 14 2.5 臭氧在DBD反應器中之生成及分解機制 17 2.6電漿觸媒之選擇 19 2.6.1介電材料 19 2.6.2反應氣體 20 2.6.3放電間隙 22 2.6.4 溫度 23 2.7光觸媒 23 2.7.1二氧化鈦 26 2.7.2二氧化鈦之改質 27 2.8本章小結 28 第三章 研究方法 29 3.1研究流程及架構 29 3.2電漿觸媒系統建立 31 3.3觸媒選擇與製備 32 3.3.1觸媒材料選擇 32 3.3.2二氧化鈦改質 33 3.3參數調整及材料開發 33 3.4觸媒選擇與製備-二氧化鈦改質 33 3.5觸媒活性測試 34 3.6觸媒特性分析 36 3.6.1 X光繞射分析儀 (XRD) 36 3.6.2 X射線光電子能譜儀 (XPS) 37 3.6.3紫外光可見光分光光譜儀(UV-vis) 37 3.6.4 掃描式電子顯微鏡(SEM) 38 3.6.5 能量分散光譜儀(EDS) 38 3.6.6 高解析度比表面積分析儀(BET) 39 3.7實驗結果計算 39 第四章 結果與討論 41 4.1觸媒基本物化特性分析 42 4.2 N-TiO2-B對臭氧生成濃度之影響 47 4.3長效性測試 49 4.4管狀反應管測試 50 4.5 塗佈N-TiO2-B對臭氧生成濃度之影響 52 4.6 能量效率評估 54 第五章 結論與建議 56 5.1 結論 56 5.2 建議 57 參考文獻 58

    Albetran, H, O’ Connor, B. H, and Low, I. M., Effect of Calcination on Band Gaps for Electrospun Titania Nanofibers Heated in Air-argon Mixtures, Materials & Design, 92, 480-485, (2016).
    Asahi, R, and Morikawa, T., Nitrogen Complex Species and its Chemical Nature in TiO2 for Visible-light Sensitized Photocatalysis, Chemical Physics, 339, 57–63 (2007).
    Bayarri, B, Cruz-Alcalde, A, and Lopez-Vinent, N., Can Ozone Inactivate SARS-CoV-2? A Review of Mechanisms and Performance on Viruses, Journal of Hazardous Materials, 415, 125658, (2021).
    Bouzoubaa, A, Markovits, A, Calatayud, M, and Minot, C., Comprison of the Reduction of Matel Oxide Surfaces:TiO2-Anatase, TiO2-Rutile and SnO2-Rutile, Surface Science, 583(1), 107-117, (2005).
    Brueggemann, N., T. Puehmeier, R. Fiekens, F.J. Richardt, and M. Salvermoser, Cooling Conditions of Ozone Generators, Ozone: Science and Engineering, 196-201 (2017).
    Chang, M. B, and Wu, S. J., Experimental Study on Ozone Synthesis via Dielectric Barrier Discharges, Ozone Science. Engineering, 19, 241-254, (1997).
    Chen, H. L, Lee, H. M, Chen, S. H, Wei, T. H, and Chang, M. B., Influence of Ar Addition on Ozone Generation in Non-Thermal Plasmas, Plasma Sources Science and Technology, 19, 065009, (2010).
    Chen, X. B, Liu, L, and Huang, F. Q., Black Titanium Dioxide (TiO2) Nanomaterials, Chemical Society Reviews, 44, 7, 1861-1885, (2015).
    Chen, X. B, Liu, L, Yu, P. Y, and Mao, S, S., Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals, Science, 331, 746-750 (2011).
    Christensen, P. A, Yonar, T, and Zakaria, K., The Electrochemical Generation of Ozone: A Review, Ozone: Science & Engineering, 35, 149–167, (2013).
    Claus, H., Ozone Generation by Ultraviolet Lamps, Photochemistry and Photobiology, 97, 3, 471-476, (2021).
    de Souza, H. M, Savi, G. D, Gomes, T, Cardoso, W. A, Cargnin, M, and Angioletto E., Ozone Application in COVID-19 Triage Areas and Its Efficiency of Microbial Decontamination, Ozone: Science & Engineering, 43, 4, 306-316, (2021).
    Dohan, J. M, and Masschelein, W. J., The Photochemical Generation of Ozone: Present State of the Art, Ozone: Science & Engineering, 9, 4, 315-334, (1987).
    Eliasson, B, Hirth, M, and Kogelschatz, U., Ozone Synthesis From Oxygen in Dielectric Barrier Discharges, Journal of Physics D:Applied Physics, 20(11), 1421-1437, (1987).
    Eliasson, B, and Kogelschatz, U., Ozone Generation with Narrow–Band UV Radiation, Ozone: Science & Engineering, 13, 3, 365-373, (1991).
    Elvis, A. M. and Ekta, J. S., Ozone Therapy: A Clinical Review, Journal of Natural Science, Biology and Medicine, 2(1), 66-70, (2011).
    Foller, P. C, and Kelsall, G. H., Ozone Generation via the Electrolysis of Fluoboric Acid Using Glassy Carbon Anodes and Air Depolarized Cathodes, Journal of Applied Electrochemistry, 23(10), 996-1010, (1993).
    Gamboa, J. A, and Pasquevich, D. M., Effect of Chlorine Atmosphere on the Anatase-Rutile Transformation, Journal of the American Ceramic Society, 75(11), 2934-2938, (1992).
    Glaze, W. H, Kang, J. W, and Chapin, D. H., The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation, Ozone: Science & Engineering, 9, 4, 335-352, (1987).
    Hayashi, M, Ochiai, T, Tago, S, Saito, H, Yahaji, T, and Fujishima, A., Electrolytic Ozone Generation at Pt/Ti Electrode Prepared by Multiple Electrostrike Method, Chemistry Letters, 48(6), 574-577, (2019).
    Hu, H, Lin, Y, Hu, Y. H., Phase Role of White TiO2 Precursor in Its Reduction to Black TiO2, Physics Letters A, 383, 2978-2982, (2019).
    Ivoning, J, van Santen, R. A., Electrostatic Potential Calculations on Crystalline TiO2:The Surface Reducibility of Rutile and Anatase, Chemical Physics Letters, 101(6), 541-547, (1983).
    Janotti, A, Van de Walle, C. G., Fundamentals of Zinc Oxide as a Semiconductor, Reports on Progress in Physics, 72(12), 126501, (2009).
    Jodzis, S., Effective Ozone Generation in Oxygen Using a Mesh Electrode in an Ozonizer with Variable Linear Velocity, Ozone: Science & Engineering, 34, 378–386, (2012).
    Katal, R, Kholghi Eshkalak, S, Masudy-Panah, S, Kosari, M, Saeedikhani, M, Zarinejad, M, and Ramakrishna., Evalution of Solar-Driven Photocatalytic Activity of Thermal Treated TiO2 under Various Atmospheres, Nanomaterials, 9, 163, (2019).
    Katal, R, Salehi, M, Davood Abadi Farahani, M. H, Masudy-Panah, S, Ong, S. L, and Hu, J., Preparation of a New Type of Black TiO2 under a Vacuum Atmosphere for Sunlight Photocatalysis, ACS Applied Materials & Interfaces, (2018).
    Kitayama, J., and M. Kuzumoto, Analysis of Ozone Generation from air in Silent Discharge, Journal of Physics D: Applied Physics, 23, 3032-3040 (1999).
    Kogelschatz, U , Eliasson, B, and Hirth, M., Ozone Generation from Oxygen and Air. Discharge Physics and Reaction Mechanisms, Ozone: Science & Engineering, 10, 367-378, (1988).
    Li, M, Yan, Y, Jin, Q, Liu, M, Zhu, B, Wang, L, Li, T, Tang, X. J, and Zhu, X. Y., Experimental Study on Ozone Generation from Oxygen in Double Surface Dielectric Barrier Discharge, Vacuum, 157, 249–258, (2018).
    Loeb, B. L., Ozone: Science & Engineering: Thirty-three Years and Growing, Ozone: Science & Engineering, 33, 4, 329-342, (2011).
    Malik, M. A., Ozone Synthesis Using Shielded Sliding Discharge: Effect of Oxygen Content and Positive versus Negative Streamer Mode, Ind. Eng. Chem. Res, 53, 12305–12311, (2014).
    McLean, L., The Miracle of Ozone Therapy. URL: http://www. zeusinfoservice. com/Articles/The Miracle of Ozone Therapy. pdf 2009.
    Michielsen, I, Uytdenhouwen, Y, Pype, J, Michielsen, B, Mertens, J, Reniers, F, Meynen, V, and Bogaerts, A., CO2 Dissociation in a Packed Bed DBD Reactor: First Steps Towards a Better Understanding of Plasma Catalysis, Chemical Engineering Journal, 326, 477-488, (2017).
    Mokoena, M. L, Brink, C. B, Harvey, B. H, and Oliver, D. W., Appraisal of Ozone as Biologically Active Molecule and Experimental Tool in Biomedical Sciences, Medicinal Chemistry Research, 20(9), 1687-1695, (2010).
    Nemmich, S., A. Tilmatine, Z. Dey, N. Hammadi, K. Nassour, and S. Messal, Optimal Sizing of a DBD Ozone Generator Using Response Surface Modeling, Ozone: Science and Engineering, 37, 3-8 (2015).
    Pekárek, S, Mikesˇ, J, and Kry ́sa, J., Comparative Study of TiO2 and ZnO Photocatalysts for the Enhancement of Ozone Generation by Surface Dielectric Barrier Discharge in Air, Catalysis, 502, 122-128, (2015).
    Pekárek, S., Non-Thermal Plasma Ozone Generation, Acta Polytech, 43, 47-51, (2003).
    Rip, R.G, and A. Netzer, Handbook of Ozone Technology and Application, ISBN, 325 (1982).
    Skalny J. D, Mikoviny T, Mason N J, and Sobek V., The Effect of Gaseous Diluents on Ozone Generation from Oxygen, Ozone: Science & Engineering, 24, 29, (2002).
    Su, T, Yang, Y, Na, Y, Fan, R, Li, L, Wie, L, Yang, B, and Cao, W., An Insight into the Role of Oxygen Vacancy in Hydrogenated TiO2 Nanocrystals in the Performance of Dye-Sensitized Solar Cells, ACS Applied Materials & Interfaces, 7(6), 3754-3763, (2015).
    Sung, Y.M., and T. Sakoda, Optimum Conditions for Ozone Formation in a Micro Dielectric Barrier Discharge, Surface and Coatings Technology, 197(2-3), 148-153, (2005).
    Tauc, J, Grigorovici, R, and Vancu, A., Optical Properties and Electronic Structure of Amorphous Germanium, Physica Status, 15(2), 627-637, (1966).
    Tauc, J., Absorption Edge And Internal Electric Fields in Amorphous Semiconductors, Materials Research Bulletin, 5(8), 721-729, (1970).
    Ullattil, S. G, Narendranath, S. B, Pillai, S. C, and Periyat, P., Black TiO2 Nanomaterials: A Review of Recent Advance, Chemical Engineering Journal, 343, 708-736 (2018).
    Xu, X., Dielectric Barrier Discharge - Properties and Applicantions, Thin Solid Films, 390(1-2), 237-242, (2001).
    Yu, J. W, Jung, G. B, Chen, C. W, Yeh, C. C, Nguyen, X. V, Ma C. C, Hsieh, C. W, and Lin, C. L., Innovative Anode Catalyst Designed to Reduce the Degradation in Ozone Generation via PEM Water Electrolysis, Renewable Energy, 129, 800-805, (2018).
    Yuan, D. K, Wang, Z.H, Ding, C, He, Y, Whiddon, R, and Cen, K.F., Ozone Production in Parallel Multichannel Dielectric Barrier Discharge from Oxygen and Air: The Influence of Gas Pressure, Journal of Physics D:Applied Physics, 49(45), 455203, (2016).
    Yuan, D. K, Ding, C, He, Y, Wang, Z. H, Kumar, S, Zhu, Y. Q, and Cen, K. F., Characteristics of Dielectric Barrier Discharge Ozone Synthesis for Different Pulse Modes, Plasma Chem. Plasma Process, 37, 1165–1173, (2017).
    李昀恩,以LaFeO3/Black-TiO2行光催化反應以去除甲苯及異丙醇之可行性探討,國立中央大學碩士論文 (2018)。
    儲憶凡,以電漿觸媒系統提升臭氧生成效率之可行性評估,國立中央大學碩士論文(2020)。

    QR CODE
    :::