跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡廷韋
Ting-Wei Hu
論文名稱: Realization and Characterization of a Lumped-Element Josephson Parametric Amplifier
Realization and Characterization of a Lumped-Element Josephson Parametric Amplifier
指導教授: 陳永富
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 46
中文關鍵詞: 約瑟夫參數放大器超導電路微波電路
外文關鍵詞: Josephson parametric amplifier, Superconducting circuit, Microwave circuit
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出並成功設計了集總式版本的約瑟夫森參量放大器(JPA),並進行了相關量測以驗證其性能。相比傳統的λ/4共振腔版本,所設計Lumped-element JPA顯著擴展了其頻寬,達到約20倍的提升,顯示出其在實際應用中的潛力。透過理論推導,我們確定了JPA設計的參數範圍,並驗證了關於JPA操作的基本表現,提出了新的設計目標與操作頻率範圍(pQ ∼ 5)。透過實際製作出並量測所設計的元件,我們發現本研究所設計的元件在附加噪聲和飽和功率方面仍有優化空間,未來的研究將集中於通過設計排除損失機制並藉由加入SQUID陣列來提升飽和功率。


    This research proposes and successfully designs a lumped-element version of the Josephson Parametric Amplifier (JPA) and conducts relevant measurements to verify its performance. Compared to the traditional λ/4 resonator version, the designed lumped-element JPA significantly expands its bandwidth, achieving about a 20-fold increase, demonstrating its potential in practical applications. Through theoretical derivation, we determined the parameter range for JPA design and verified the basic performance of JPA operation, proposing new design goals and operational frequency range (pQe ∼ 5). Through the actual fabrication and measurement of the designed component, we found that the component designed in this research still has room for optimization in terms of added noise and saturation power. Future research will focus on eliminating loss mechanisms through design and enhancing saturation power by incorporating SQUID arrays.

    1序序序論論論1 1.1約瑟夫森參量放大器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2約約約瑟瑟瑟夫夫夫森森森參參參量量量放放放大大大器器器理理理論論論4 2.1約瑟夫森效應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2約瑟夫森方程式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3約瑟夫森電感值. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4超導量子干涉儀SQUID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5集總元件式放大電路簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.6參量放大器理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.6.1磁通量泵浦模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.6.2電流泵浦模型與杜芬振盪. . . . . . . . . . . . . . . . . . . . . . . . . 10 3集集集總總總元元元件件件式式式LC共共共振振振腔腔腔電電電路路路設設設計計計13 3.1電路參數簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2參數設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4實實實驗驗驗方方方法法法與與與結結結果果果討討討論論論18 4.1元件圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2實驗架設圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3元件參數擬和結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.4放大效果表現. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.4.1優化操作點(Operationoptimization) . . . . . . . . . . . . . . . . . . . 22 4.4.2 Pumppowerdependence . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4.3附加雜訊量測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4.4飽和功率. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5結結結論論論31

    [1] Z. R. Lin, K. Inomata, W. D. Oliver, K. Koshino, Y. Nakamura, J. S. Tsai, T. Yamamoto.
    ”Single-shot readout of a superconducting flux qubit with a flux-driven Josephson para
    metric amplifier.” Appl. Phys. Lett. 103, 132602 (2013)
    [2] S. Uchaikin, Kim, Jinmyeong, Kutlu, Caglar, Ivanov, Boris. ”Josephson Parametric
    Amplifier based Quantum Noise Limited Amplifier Development for Axion Search Ex
    periments in CAPP.” Front. Phys. 12, 10.3389 (2024)
    [3] H. Chang, J. Y. Chang, Y. C. Chang, Y. Han Chang, Y. Hann Chang, C. H. Chen, C.
    F. Chen, K. Y. Chen, Y. F. Chen, et al. ” First Results from the Taiwan Axion Search
    Experiment with a Haloscope at 19.6µeV.” Phys. Rev. Lett. 129, 111802 (2022)
    [4] T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki, W. D. Oliver, Y.
    Nakamura, J. S. Tsai. ”Flux-driven Josephson parametric amplifier.” Appl. Phys. Lett.
    93, 042510 (2008)
    [5] C. M. Caves. ”Quantum limits on noise in linear amplifiers.” Phys. Rev. D 26, 1817
    (1982)
    [6] A. Barone, G. Paterno. ”Physics and Applications of the Josephson Effect.” Chap. 11
    (1982)
    [7] T. Elo, T. S. Abhilash, M. R. Perelshtein, I. Lilja, E. V. Korostylev, P. J. Hakonen.”
    Broadband lumped-element Josephson parametric amplifier with single-step lithogra
    phy.” Appl. Phys. Lett. 114, 152601.(2019)
    [8] J. Y. Mutus, T. C. White, E. Jeffrey, D. Sank, R. Barends, J. Bochmann, Yu Chen,
    Z. Chen, B. Chiaro, A. Dunsworth, J. Kelly, A. Megrant, C. Neill, P. J. J. O’Malley,
    P. Roushan, A. Vainsencher, J. Wenner, I. Siddiqi, R. Vijay, A. N. Cleland, John M.
    Martinis. ”Design and characterization of a lumped element single-ended superconduct
    ing microwave parametric amplifier with on-chip flux bias line.” Appl. Phys. Lett. 103,
    122602 (2013)
    [9] R. Kaufman, T. White, Mark I. Dykman, A. Iorio, G. Sterling, S. Hong, A. Opremcak,
    A. Bengtsson, L. Faoro , Joseph C. Bardin , T. Burger, R. Gasca, O. Naaman. ”Joseph
    son parametric amplifier with Chebyshev gain profile and high saturation.” Phys. Rev.
    Applied 20, 054058 (2023)
    [10] O. Naaman, D. G. Ferguson, A. Marakov, M. Khalil, W. F. Koehl, R. J. Epstein, “High
    Saturation Power Josephson Parametric Amplifier with GHz Bandwidth.” 2019 IEEE
    MTT-S International Microwave Symposium (IMS) (2017): 259-262.
    [11] K. Peng, R. Poore, P. Krantz, D. E. Root, K. P. O’Brien, ”X-parameter based design
    and simulation of Josephson traveling-wave parametric amplifiers for quantum comput
    ing applications.” 2022 IEEE International Conference on Quantum Computing and
    Engineering (2022)
    [12] C. Eichler, A. Wallraf. ”Controlling the dynamic range of a Josephson parametric am
    plifier.” Eichler and Wallraff EPJ QuantumTechnology (2014)
    [13] D. Arweiler. ”Multi-SQUID Josephson Parametric Ampliers.” Master Thesis, Technical
    University of Munich (2018)
    [14] N. S. Chang. ”Design and Performance Verification of Flux-Driven Josephson Parametric
    Amplifier.” National Central University (2023)
    [15] C. Tannous. ”Superconductivity fundamentals and Applications.” Master. Milieux Dilec
    triques et Magntiques, UBO Brest, France. (2016)
    [16] Y. Yamamoto, K. Semba (eds.). ”Principles and Methods of Quantum Information Tech
    nologies.” Lecture Notes in Physics 911.(2016)
    [17] M. Hatridge, R. Vijay, D. H. Slichter, John Clarke, I. Siddiqi. ”Dispersive magnetometry
    with a quantum limited SQUID parametric amplier.” Phys. Rev. B 83, 134501 (2011)
    [18] V.E. Manucharyan, E. Boaknin, M. Metcalfe, R. Vijay, I. Siddiqi, M. Devoret. ”Mi
    crowave bifurcation of a Josephson junction: Embedding-circuit requirements.” Phys.
    Rev. B 76, 014524 (2007)
    [19] R. Vijay, M. H. Devoret, I. Siddiqi. ”Invited Review Article: The Josephson bifurcation
    amplifier.” Rev. Sci. Instrum. 80, 111101 (2009)
    [20] A. W. Eddins. ”Superconducting Circuits for Quantum Metrology with Nonclassical
    Light.” Doctor Thesis, University of California, Berkeley (2017)
    [21] I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and M.
    H. Devoret. ”RF-Driven Josephson Bifurcation Amplifier for Quantum Measurement.”
    Phys. Rev. Lett. 93, 207002 (2004)
    [22] A. Baust. ”Characterization of Flux-driven Josephson Parametric Ampliers.” Master
    Thesis, Technical University of Munich (2010)
    [23] W. Wustmann, V. Shumeiko. ”Parametric resonance in tunable superconducting cavi
    ties.” Phys. Rev. B 87, 184501 (2013)
    [24] M. A. Castellanos-Beltran. ”Development of a Josephson parametric amplifier for the
    preparation and detection of nonclassical states of microwave fields.” Diss. University of
    Colorado at Boulder, (2010)
    [25] M. A. Castellanos-Beltran, K. W. Lehnert. ”Widely tunable parametric amplifier based
    on a superconducting quantum interference device array resonator.” Appl. Phys. Lett.
    91, 083509 (2007)
    [26] M. A. Castellanos-Beltran, K. D. Irwin, L. R. Vale, G. C. Hilton and K. W. Lehnert.
    ”Bandwidth and Dynamic Range of a Widely Tunable Josephson Parametric Amplifier.”
    Applied Superconductivity, IEEE Transactions (2009)
    [27] J. Y. Mutus, T. C. White, E. Jeffrey, D. Sank, R. Barends, J. Bochmann, Yu Chen,
    Z. Chen, B. Chiaro, A. Dunsworth, J. Kelly, A. Megrant, C. Neill, P. J. J. O’Malley,
    P. Roushan, A. Vainsencher, J. Wenner, I. Siddiqi, R. Vijay, A. N. Cleland, John M.
    Martinis. ”Design and characterization of a lumped element single-ended superconduct
    ing microwave parametric amplifier with on-chip flux bias line.” Appl. Phys. Lett. 103,
    122602. (2013)

    QR CODE
    :::