| 研究生: |
胡珪渝 Guei-Yu Hwu |
|---|---|
| 論文名稱: |
天然氣火力發電廠氣渦輪機燃燒室最大火焰溫度評估及熱功轉換應用 Maximum Combustion Flame Temperature Evaluation and Thermal Power Conversion application in Natural Gas Power Plant |
| 指導教授: | 傅尹坤 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系在職專班 Executive Master of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 天然氣複循環發電 、氮氧化物 、空燃比(AFR) 、氣渦輪機進氣溫度(TIT) 、燃燒器 、火焰溫度 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
天然氣複循環發電方式乃是當前發電方式主流之一,但仍有燃料成本較高,氮氧化物排放抑低等問題,希望透過實務面之探討,利用空燃比方法推導燃燒器火焰溫度作為氣渦輪機進口溫度來計算熱效率,並與氣渦輪機功率輸出方法計算熱效率彼此作比較,找出設備性能評估診斷方法。
本文參考熱力學原理之應用以第一定律熱功平衡、第二定律熵增定理及天然氣成份經燃燒後擷取煙氣排放過剩氧含量推算空燃比(AFR),以化學平衡反應式推導氣渦輪機燃燒器最大火焰溫度作為氣渦輪機進氣溫度(TIT),並結合氣渦輪機熱力循環之運轉實例,以氣渦輪機進氣溫度(TIT) 計算熱效率及評估設備性能提供實務方法,同時以空燃比原理計算燃燒器火焰溫度,提供可應用之計算模式,也對氮氧化物排放與空燃比關係提出調整建議。
經實驗501F型GT空燃比(AFRmass)約於46及501G型GT約於42時氣渦輪機熱效率最佳。且提升燃料及燃燒空氣溫度對熱效率及氮氧化物排放濃度之降低都有極佳助益,而提升燃燒空氣溫度功能性遠大於提升燃料溫度。
利用空燃比來計算燃燒器最大火焰溫度做為TIT,以進一步評估氣渦輪機作功能力,可以獲得很高準確性,若再與氣渦輪機實際出力熱轉換效率之差異性比較,更可以做為設備熱元件或組裝時缺陷診察判斷之工具,以進一步改善提出方法。
Natural gas combined cycle power generation is one of the current power generation mainstream, but there are still higher fuel costs, nitrogen oxides emission reduction and other issues. The practical aspect of use the air-fuel ratio (AFR) method to derive the combustion flame temperature and that can be calculated as the function of gas turbine inlet temperature and thermal efficiency. In addition, we also compare with power output conversion thermal efficiency method. They can be correlated with the equipment performance and as a diagnostic method.
In this thesis, the application of thermodynamics principle to the first law of thermal balance, the second law entropy increase theorem and natural gas components after combustion of flue gas emissions from excess oxygen are adopted to calculate the air-fuel ratio(AFR) and used to chemical equilibrium reaction derived gas turbine inlet temperature(TIT), combined with the operation example of the gas turbine thermal cycle, to calculate the Brayton cycle efficiency of the gas turbine and to evaluate the performance of the equipment. At the same time, the air-fuel ratio is calculated as a function of the combustion flame temperature, to provide the application of the calculation model and the relationship between nitrogen oxide emissions and AFR adjustment is proposed.
Experimental results showed that 501F type GT AFR(kg) is about 46 and 501G GT is about 42 when the gas turbine thermal efficiency is the optimal. And the promotion of fuel and combustion air temperature on the thermal efficiency and nitrogen oxide emission concentration is very promising, and enhancement of the combustion air temperature function has greater impact than that of the fuel temperature.
The maximum flame temperature of the combustor is calculated by using the AFR as a function of TIT to further evaluate the working capacity of the gas turbine, and it is highly accurate (favorable) to compare with the actual power output efficiency of the gas turbine. Furthermore, TIT can be used as the diagnostic tool for the early monitoring of defective components or assembly of the power plant.
Keywords:Natural gas combined cycle power generation , NOx, Air-fuel ratio (AFR), Gas turbine inlet temperature (TIT), Combustor, Flame temperature
[1]Thamir K., Ibrahim , M. M. Rahman, “Effect of Compression Ratio on Performance of Combined Cycle Gas Turbine”, International Journal of Energy Engineering 2012.2(1):9-14, pp. 10, Scientific & Academic Publishing, 2012.
[2]ASME PERFORMANCE TEST CODE COMMITTEE 22 GAS TURBINES,“ASME PTC 22-2005”, Revision of ASME PTC 22-1997(R2003), THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS, 2006.
[3]Muammer Özkan, “A Comparative Study on Energy and Exergy Analyses of a CI Engine Performed with Different Multiple Injection Strategies at Part Load: Effect of Injection Pressure” ,IC Engines Laboratory, Department of Mechanical Engineering, Yıldız Technical University, Marc A. Rosen, 12 January 2015.
[4]C.D. Rakopoulos, D.C. Kyritsis, “Comparative second-law analysis of internal combustion engine operation for methane, methanol, and dodecane fuels”, Energy 26 (2001) 705–722.
[5]Chintala, Venkateswarlu, Subramanian, K.A., “Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis”, Energy 67 (2014) 162-175, Elsevier Ltd, 2014.
[6]Ashwani K. Gupta., “FLAME CHARACTERISTICS AND CHALLENGES WITH HIGH TEMPERATURE AIR COMBUSTION”, University of Maryland, Department of Mechanical Engineering.
[7]Fernandorueda Rueda Martínez, et al.,“ Evaluation of the Gas Turbine Inlet Temperature with Relation to the Excess Air”, Energy and Power Engineering, 2011, 3, pp. 517-524.
[8]M. M. Rahman, et al., “Thermodynamic performance analysis of gas-turbine power-plant”, International Journal of the Physical Sciences Vol. 6(14), pp. 3539-3550, 18 July, 2011.
[9]CLAUS BORGNAKKE, RICHARD E. SONNTAG, FUNDAMENTALS OF THERMODYNAMICS, 林正仁等編譯, 7th, 熱力學, pp.5-1-10-23, 全華圖書股份有限公司。
[10]網路資料:Heat and Thermodynamics/Heat Engines, 取自http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/heaeng.html#c1
[11]網路資料:Brayton Cycle:Ideal Cycle for Gas Turbine Engineers, 取自http://slideplayer.com/slide/3872646/.
[12]Prof. Z. S. Spakovszky,“ Thermodynamics and Propulsion”, Douglas Quattrochi translation, the LaTeX2HTML translator Version 2002-2-1.
[13] B. G. Kyle,“ Chemical and Process Thermodynamics (Englewood Cliffs, NJ: Prentice-Hall, 1984) Table A-2,” and “Dahtarn Power Plant O&M , Heat Balance”, and CLAUS BORGNAKKE and RICHARD E. SONNTAG , Thermodynamics Appendix A.5、A7.1、A.8.
[14]CLAUS BORGNAKKE, RICHARD E. SONNTAG, FUNDAMENTALS OF THERMODYNAMICS, 林正仁等編譯, 7th, 熱力學, pp.11-1-15-33, 全華圖書股份有限公司。
[15]吉興工程公司, “大潭發電廠501F 2號機FAT效率試驗見證報告”, 2010,10.
[16]MHPS, “501F GT O&M heat balance table”, 吉興工程公司, 及“大潭發電廠501F 2號機FAT效率試驗見證報告”, 2010,10.
[17]CLAUS BORGNAKKE, RICHARD E. SONNTAG, FUNDAMENTALS OF THERMODYNAMICS, 林正仁等編譯, 7th, 熱力學, Appendix A.9、A.10., 全華圖書股份有限公司。
[18]網路資料:液化石油氣與液化天然氣之特性, 取自http://163.32.74.2/site/teh-car/teaching/LPG/06096-02.pdf.
[19]B. G. Kyle, Chemical and Process Thermodynamics (Englewood Cliffs, NJ: Prentice-Hall, 1984), Appendix 1,Table A-2.
[20]The Babcock & Wilcox Company, Steam/its generation and use. 41st edition,pp.34-1-34-2, John B. Kitto and Steven C. Stultz., The Babcock & Wilcox Company, Barberton, Ohio, U.S.A.2005.
[21]張君正,張木彬,「氮氧化物生成機制與控制技術之探討」,工業污染防治,第50期(4.1994),22頁。
[22] Francisc Popescu, Ioana Ionel, “Anthropogenic air pollution sources” University Politehnica from Timisoara Romania.
[23]網路資料:MIT Gas Turbine Laboratory, 取自http://web.mit.edu/aeroastro/labs/gtl/early_GT_history.html#1939