| 研究生: |
馮耕豪 Geng-Hao Feng |
|---|---|
| 論文名稱: |
紋理鋸齒型石墨烯奈米帶的熱電特性 |
| 指導教授: |
郭明庭
Ming-Ting Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 34 |
| 中文關鍵詞: | 紋理鋸齒形石墨烯奈米帶 、熱電特性 、量子點 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
紋理鋸齒型石墨烯奈米帶(t-ZGNRs)的熱電特性非常特別,其傳輸係數帶有類似於Square Form (SF)傳輸係數的概念,因此值得我們去研究其熱電特性。我們用緊束縛模型(tight-binding mode)的架構來研究t-ZGNRs連接到電極的熱電特性,除了通過調控穿隧率來提高功率因子和熱電優質,還有調控graphene quatum dots (GQDs)的數量來控制GNR迷你帶的寬度及能隙,我們發現紋理鋸齒型石墨烯奈米帶(t-ZGNRs)的功率因子和熱電優質(ZT)的最大值都發生在能帶邊緣,而要有好的功率因子必須電導率、席貝克係數要大,聲子熱導要小,但是也會影響到熱電優質(ZT),因此如何在這些參數之間取得最佳化,也是我們要面對的問題。
The thermoelectric properties of textured zigzag graphene nanoribbons (t-ZGNRs) are highly unique. They exhibit a transmission coefficient with a concept similar to Square Form (SF) transmission coefficient, making it worthwhile to research their thermoelectric properties. We utilize the thermoelectric properties of t-ZGNRs connected to electrodes using a tight-binding model framework. In addition to enhancing the power factor (PF) and figure of merit (ZT) by controlling the tunneling rates, we also manipulate the number of graphene quantum dots (GQDs) to control the width and energy gap of GNR minibands. We observe that the maximum values of PF and ZT in t-ZGNRs occur near the band edges. To achieve a high PF, it is essential to have a large electrical conductivity and Seebeck coefficient while minimizing phonon thermal conductivity. However, these factors also affect ZT. Therefore, finding a balance among these parameters is also a challenge we have to face.
[1] K.E. Lonngren. On the global warming problem due to carbon dioxide. Energy Policy 36, 1567 (2008).
[2] R. S. Whitney. Most Efficient Quantum Thermoelectric at Finite Power Output. Phys. Rev. Lett. 112,13 (2014).
[3] Y. Xu, Z. X. Gan and S. C. Zhang. Enhanced Thermoelectric Performance
and Anomalous Seebeck Effects in Topological Insulators. Phys. Rev. Lett. 112,226801 (2014).
[4]G. D. Mahan and J. O. Sofo. The best thermoelectric.Proc. Natl. Acad. Sci. USA 93, 7436,(1996).
[5]T. Horiand J. Shiomi. Tuning phonon transport spectrum for better thermoelectric materials. Sci. and Tech of Advanced Mater.20, 10 (2020).
[6]A. I. Boukai,Y. Bunimovich, J. Tahir-Kheli,J . K. Yu , W. A. GoddardandJ. R. Heath. Silicon nanowires as efficient thermoelectric materials. Nature451, 168 (2008).
[7]F. Dominguez-Adame,M. Martin-Gonzalez,D. Sanchezand A. Cantarero.
Nanowires: A route to efficient thermoelectric devices. Phys Low Dimensional Systems & Nanostructures 113, 213 (2019).
[8] David M. T. Kuo and Y. C. Chang. Contact Effects on Thermoelectric Properties of TexturedGraphene Nanoribbons. Nanomaterials 12, 3357 (2022).
[9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang , S. V. Dubonos, I. V. Grigorieva and A. A. Firsov. Novel Two-Dimensional Materials: Graphene and Its Applications. Science 306, 666 (2004).
[10] J. Baringhaus,M.Ruan, F. Edler, A.Tejeda,M. Sicot,A. Taleb-Ibrahimi,A. P. Li,Z. G. Jiang,E. H. Conradand C. Berger.Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506, 349 (2014).
[11] S. K. Tiwari,S. Sahoo, N. Wang and A. Huczko.Graphene research and their outputs: Statusand prospect. Journal of Sci. Advanced Mater. And Devices 5, 10 (2020).
[12] M. Batzill. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surface Science Reports 67, 83 (2012).
[13] H. M. Wang,H. S. Wang,C. X. Ma,L. X. Chen, C.X. Jiang,C. Chen,X. M. Xie,A. P. LiandX. R. Wang.Graphene nanoribbons for quantum electronics. Nature Rev. Phys 3, 791 (2021).
[14] A. Kimouche, M. M. Ervasti, R. Drost,S. Halonen,A. Harju,P. M. Joensuu,J. Sainioand P. Liljeroth. Ultra-narrow metallic armchair graphene nanoribbons. Nature Communications 6, 10177 (2015).
[15] G. Z. Magda,X. Z. Jin,I. Hagymasi,P. Vancso,Z. Osvath,P. Nemes-Incze,C. Y. Hwang,L.P. Biroand L. Tapasz. Room-temperature magnetic orderon zigzag edges of narrow graphene nanoribbons. Nature 514, 608 (2014).
[16] D. Topwal. Quantum confinement effects in low-dimensional systems. Pramana-Journal of Phys 84, 1023 (2015).
[17] L. D. Hicksand M. S. Dresselhaus.Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev. B 47, 16631 (1993).
[18] J. Z. Liuand X. L. Feng. SyntheticTailoring of Graphene Nanostructures
with Zigzag-Edged Topologies: Progress and Perspectives. AngewandteChemie-International Edition 59, 23386 (2020).
[19] P. Ruffieux,S. Y. Wang,B. Yang,C. Sanchez-Sanchez,J. Liu, T. Dienel, L. Talirz,P. Shinde,C. A. Pignedoliand D. Passerone.On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489 (2016).
[20] H. Sevincli,M. Topsakaland S. Ciraci.Superlattice structures of
graphene-based armchair nanoribbons. Phys. Rev. B 78, 245402
(2008).
[21] M. Topsakal,H. Sevincliand S. Ciraci.Spin confinement in
the superlattices of graphene ribbons. Appl. Phys. Lett. 82, 173118 (2008).
[22] H. Haug and A. P. Jauho. Quantum Kinetics in Transport and Optics of Semiconductors. (Springer, Heidelberg, 1996).
[23] David M. T. Kuo.Thermoelectric and electron heat rectification properties
of quantum dot superlattice nanowire arrays. AIP Advances 10, 45422 (2020).