跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳美芳
Mei-fang Chen
論文名稱: 聯合長期追蹤與存活資料分析---術後黑色素細胞瘤之實例分析
Joint modeling of longitudinal and survival data---A case study in patients with resected melanoma
指導教授: 曾議寬
Yi-kuan Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 100
語文別: 中文
論文頁數: 60
中文關鍵詞: Percentile拔靴法BC percentile 法聯合模型Cox比例風險模型概似比檢定Wald type 拔靴法
外文關鍵詞: BC percentile method, Cox proportional hazard model, Joint model, Likelihood ratio test, Wald type bootstrap, Percentile bootstrap
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇文章中,我們利用免疫球蛋白抗體Igm值以及注射疫苗的不同(IFN+GMK和GMK)來評估術後黑色素細胞瘤病患的復發狀況。主要是利用聯合模型(joint model)的概念來對資料做分析,聯合模型包含了兩種訊息,其一為長期追蹤資料,其二為存活資訊。以聯合模型所求得的參數估計值具有一致性(consistency)、有效性(efficiency)以及漸進常態(asymptotic normality)的性質。在第一部分我們使用線性隨機效應模型(linear random effect model)對長期追蹤資料做配適,並利用概似比檢定診斷長期追蹤模型的適合度。而在第二部分則是使用Cox比例風險模型描述變數與存活時間。結合這兩部分建構出聯合概似模型且利用EM演算法(expectation maximize algorithm)對參數做估計。接著利用Wald type 拔靴法、Percentile拔靴法及BC percentile 法檢視參數的顯著與否。


    In this study, we want to investigate the relationship between recurrent time of patients with resected melanoma and their immunoglobulin M serologic. In addition, we are interested in the influence of different types of vaccines. Since the data includes both information of survival and longitudinal processes, joint model approach is applied to analyze the data. The longitudinal data is described by a linear random effects model, and the survival time is fitted by the Cox model. To derive the estimates of all parameters, Monte Carlo EM algorithm is used by taking random effects as missing. The standard error estimates are obtained through bootstrap re-sampling and corrected by both Percentile bootstrap and BC percentile method.

    摘要I Abstract II 誌謝辭III 目錄IV 表目錄VI 圖目錄VII 第一章 緒論........ 1 1-1 背景資料....... 1 1-1.1疾病介紹...... 2 1-1.2疾病病因...... 3 1-1.3診斷指標...... 4 1-1.4黑色素細胞瘤的分期...... 5 1-1.5黑色素細胞瘤的處置及預後....6 1-2研究背景........ 7 1-3研究目的........ 10 第二章 統計方法.... 12 2-1 長期追蹤模型... 13 2-2 Cox比例風險模型......... 15 2-3 加速失敗時間模型......... 15 2-4 擴充風險模型... 17 2-5 聯合概似函數... 19 2-6 EM演算法....... 21 2-6-1估計參數...... 21 2-6-2參數標準差與信賴區間之估計........ 24 第三章 實例分析.... 27 3-1 資料介紹....... 27 3-2 圖形法......... 28 3-2.1輪廓圖 (profile graph).. 29 3-2.2 事件歷史圖.. 35 3-2.3 3D平滑曲面圖及等高圖.. 41 3-3 比例風險檢定... 47 3-4 聯合模型....... 49 第四章 結論與討論.. 55 參考文獻..57

    [1]Ciampi, A. and Etezadi-Amoli, J. (1985). A general model for testing the proportional hazards and the accelerated failure time hypothesis in the analysis of censored survival data with covariate. Communications in Statistics, 14, 651-667.
    [2]Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society, 34, 187-220.
    [3]Cox, D. R. and Oakes, D. (1984), Analysis of Survival Data, Chapman and Hall,London, New York.
    [4]Dafni, U. G. and Tsiatis, A. A. (1998). Evaluating surrogate markers of clinical outcome when measured with error. Biometrics, 54, 1445-1462.
    [5]Dubin, J. A., Müller, H. G. and Wang, J. L. (2001).Event history graphs for censored survival data. Statistics in Medicine, 20, 2951-2964.
    [6]Efron, B., Tibshirani, R. J. (1993). An introduction to the Bootstrap. Chapman & Hall,New York.
    [7]Henderson, R., Diggle, P. and Dobson, A. (2000). Joint
    modeling of longitudinal measurements and event time data.Biostatistics, 4, 465-480.
    [8]Hsieh, F., Tseng, Y. K. and Wang, J. L. (2006). Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited. Biometrics, 62, 1037-1043.
    [9]Kaplan, E. L. and Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53, 457-481.
    [10]Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963-974.
    [11]Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regression model.Biometrika, 69, 331-342.
    [12]Schoenfeld, D. (1980). Chi-squared goodness-of-fit tests for the proportional hazards regression model. Biometrika,67, 145-153.
    [13]Schoenfeld, D.A. (1982). Partial residuals for the
    proportional hazards regression model. Biometrika, 69,
    239-241.
    [14]Tseng, Y. K., Hsieh ,F. and Wang, J. L. (2005). Joint modeling of accelerated failure time and longitudinal data.Biometrika, 92, 587-603.
    [15]Tsiatis, A. A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika,88, 447-458.
    [16]Tsiatis, A. A. and Davidian, M. (2004). Joint Modeling of Longitudinal and Time-to-Event Data: An Overview.
    Statistica Sinica, 14, 809-834.
    [17]Yan, X. Z.(2010) Joint modeling of longitudinal and
    survival data-A case study in patients with resected
    melanoma. Master thesis, Graduate Institute of Statistics
    National Central University
    [18]Wulfsohn, M. S. and Tsiatis, A. A. (1997). A Joint Model for Survival and Longitudinal Data Measured with Error. Biometrics, 53, 330-339.
    [19]Zeng, D. and Cai, J. (2005). Asymptotic Results for Maximum Likelihood Estimators in Joint Analysis of Repeated
    Measurements and Survival Time. The annals of Statistics,
    33(5), 2132-2163.
    [20]Zeng, D. and Lin, D. Y. (2007a). Maximum Likelihood
    Estimation in Semiparametric Regression Models with
    Censored Data (with Discussion). Journal of the Royal
    Statistical Society, Series B 69, 507-564.
    [21]Zeng, D. and Lin, D. Y. (2007b). Efficient Estimation in the Accelerated Failure Time Model. Journal of the American Statistical Association, 102, 1387-1396.

    QR CODE
    :::