跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王傳鈞
Chuan-Jyun Wang
論文名稱: 常壓下熱電材料特性量測方法之模擬與分析
Simulation and Analysis of Thermoelectric Measurement Methods Under Atmospheric Pressure
指導教授: 洪銘聰
Ming-Tsung Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 93
中文關鍵詞: 熱電模擬熱電材料熱電量測多孔矽自然對流
外文關鍵詞: thermoelectric materials, thermoelectric simulation, thermoelectric measurements, porous silicon, natural convection
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是介紹常壓下熱電量測的模擬分析及設計過程。由於常壓下的模擬和量測,必須考慮到環境因素的條件,因此,自行設計了一封閉系統,使系統內的環境溫度呈一穩定的狀態,來減少量測過程中的誤差。所以在此必須先瞭解熱電材料的統御方式,再透過有限元素的分析,使其對熱電材料模擬,並且藉由模擬的過程中,可以看出熱電材料所呈現的變化。
    除了熱電材料的模擬外,還特別考慮到封閉系統內的流場變化,也就是針對自然熱對流的效應去探討,並且選用Navier-Stokes和熱傳方程式去模擬分析,利用熱流耦合的方式去分析整個流場的熱對流效應,使瞭解熱電塊材在封閉系統內,是否會受到流場變化的影響。
    然而現今熱電材料已被廣泛的研究和使用,但好像都沒有一定的量測方式,因此,利用模擬的方式去探討熱電變化的過程,經過模擬的驗證後,再藉由此方式去架設熱電量測的設備,讓此設備可以同時進行Seebeck係數和熱傳導係數的量測。
    最後再針對兩種不同結構的材料去量測,分別去探討矽及多孔矽結構的材料,去比較其量測值之間的差異,並藉由量測的結果去瞭解相同的材料而不同的結構,就會產生不同的熱電效應,也就是因為熱傳導係數的改變,而影響到熱電優值(ZT)的變化。
    本模擬是利用Comsol有限元素分析軟體建立熱電模型,探討其溫度分佈及熱流耦合效應的影響。


    This paper is to introduce the thermoelectric simulation analysis and design measured at atmospheric pressure.When the simulation and measurement at atmospheric pressure, the environmental factor needs to be considered.Therefore, designing a closed system in order to let the temperature become stable and reduce the error during the process of measurement.At first, we need to understand the way of controlling thermoelectric materials, and simulate the thermoelectric materials by finite element. From the process of simulation, we would observe the change of thermoelectric materials.
    This experience is based on : 1.thermoelectric simulation 2. closure of the flow patterns within the system. we use Navier-Stokes and Thermal diffusion equation to simulate and analyze. We discuss the effect of natural convection especially.
    However, the current thermoelectric materials have been extensively studied and used, but did not seem to be the measurement standard, therefore, with the simulations to investigate the thermal changes in the process of verification through simulation, then by the way Set up thermal power measurement equipment, so the device can be Seebeck coefficient and thermal conductivity measurements.
    Finally, the structure for two different materials to measure, respectively, to explore the structure of silicon and porous silicon materials, to compare the differences between the measured values, and by measuring the results to understand the same material, but different Structure, will have different thermoelectric effect, which is due to changes in thermal conductivity, which affects the figure of merit (ZT) changes.
    This simulation is the use of Comsol finite element analysis software thermal model to investigate the temperature distribution and thermal coupling effect.

    摘 要 i Abstract iii 誌 謝 v 目 錄 vi 圖 目 錄 iix 表 目 錄 xii 第一章 緒論 1 1.1 前言 1 1.2 熱電材料的發展史 2 1.3 研究動機與目的 6 1.4 論文組織架構 7 第二章 理論基礎與文獻回顧 9 2.1 熱電效應 9 2.1.1 Seebeck效應 9 2.1.2 Peltier效應 10 2.1.3 Thomson效應 11 2.2 熱電優值(Thermoelectric Figure of Merit) 13 2.3 熱電物理性質 14 2.3.1 晶格振動之量子化與聲子 14 2.3.2 電傳導理論 15 2.3.3 熱傳導理論 16 2.4 文獻回顧 18 2.4.1 矽的傳輸性質 18 2.4.2 電阻率及Seebeck量測的實驗裝置 19 2.4.3 在高溫下的熱電性質與效率的量測 20 第三章 研究方法與模擬和實驗的設計分析 22 3.1 熱電統御方程式 24 3.2 有限元素分析 25 3.3 自然熱對流(Natural convection) 27 3.3.1 表面上之自然對流(Natural Convection over Surfaces) 27 3.4 熱流耦合的有限元素分析-自然熱對流 31 3.5 常壓下的實體模型建立 32 3.6 電阻率量測方法 34 3.7 熱傳導率量測方法 36 3.8 Seebeck係數量測方法 38 第四章 模擬的結果與討論 40 4.1 建立在真空狀態下的模擬 40 4.2 常壓下熱電模擬的結果與分析 43 4.3 常壓下自然熱對流的模擬分析 47 4.4 散熱片的分析 58 第五章 實驗的結果與討論 62 5.1 矽的電阻率量測結果 62 5.2 矽的熱傳導係數量測結果 63 5.3 矽的Seebeck係數量測結果 64 5.4 矽的ZT值 67 5.5 多孔矽材料結構 68 5.5.1 多孔矽的熱電量測 73 5.6 誤差分析 79 5.6.1 誤差的來源 80 5.6.2 系統誤差的探討與分析 81 5.6.3 誤差傳播的探討 84 5.6.4 誤差傳播的處理與分析 84 第六章 結論與未來工作 86 參 考 文 獻 88 附 錄 92

    [1]Thermoelectric truck engine generator.Hi-Z Technology Inc. (1999).
    [2]J.P. Heremans, C. M. Thrush, D. T. Morelli and M.C. Wu, PRL 88, 216801-1 (2002).
    [3]Rama Venkatasubramanian, E. Siivola, T. Golpitts,B. O''Qinn, Nature 413, P597, (2001).
    [4]T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge,Science, 297, 2229 (2002).
    [5]Richman.R, “Prospects for efficient thermoelectric materials in the near term”, In DARPA/DOE High Efficient Thermoelectric Workshop, San Diego, CA. (2002).
    [6]Mildred S. Dresselhaus,Gang Chen, Ming Y.Tang, Ronggui Yang,Hohyun Lee, Dezhi Wang,Zhifeng Ren, Jean-Pierre Fleurial,and Pawan Gogna, “New Directions for Low-Dimensional Thermoelectric Materials”, ADVANCED MATERIALS Vol.19, p1043-1053, (2007).
    [7]D.M.Rowe,“CRC Handbook of Thermoelectrics”, (1994).
    [8]E.Altenkirch,“Physikalische Zeitschrift,Vol.12,1911, p920–924, (1911).
    [9]L. Weber and E. Gmelin, “Transport Properties of Silicon”, Applied Physics A: Materials Science & Processing, Vol.53 (no.2), p136-140, (1991).
    [10]O. Boffoué, A. Jacquot, A. Dauscher, and B. Lenoir,“Experimentalsetup for the measurement of the electrical resistivity and thermopower of thin films and bulk materials”, REVIEW OF SCIENTIFIC INSTRUMENTS 76, 053907, (2005).
    [11]A. Muto, D. Kraemer, Q. Hao, Z. F. Ren, and G. Chen,
    “Thermoelectric properties and efficiency measurements under large temperature differences”, Review of scientific instruments 80, 093901, (2009).
    [12]Landau L. D. and Lifshitz, E. M.,“Electrodynamics of Continuous Media”, 2nd Edition, Butterworth-Heinemann, (Oxford,1984).
    [13]M. Jaegle,“Proceedings of the European Conference on
    Thermoelectric”, Odessa (2007).
    [14]Churchill, S.W. and H.H.S. Chu, “Correlating Equations for Laminar and Tubulent Free Convection from a Vetrical”, Int.J.Heat Mass Transfer, 18, 1323, (1955).
    [15]Rich, B.R, “An Investigation of Heat Transfer from an Inclined Flat plate in Free Convection”, Trans. ASME, 75, 489, (1953).
    [16]Vlient, G.C, “Natural Convection Local Heat Transfer on Constant-Heat-Flux Inclined Surfaces”, Trans. ASME, 91C, 511,(1969).
    [17]Fujii, T, and H.Imura, “Natural Convection Heat Transfer from a Plate with Arbitrary Inclination”, Int. J. Heat Mass Transfer, 15, 755, (1972).
    [18]Azevedo, L. F. and E. M. Sparrow, “Natural Convection in Open-ended Inclined Channels”, J. Heat Transfer, 107, 893, (1985).
    [19]McAdams, W. H, “Heat Transmission”, 3rd ed, McGraw-Hill, New York, Chap.7, (1954).
    [20]Goldstein, R. J, E. M. Sparrow, and D. C. Jones, “Natural Convection
    Mass Transfer Adjacent to Horizontal Plates”, Int. J. Heat Mass Transfer, 16, 1025, (1973).
    [21]Lloyd, J. R, and W. R. Moran, “Natural Convection Adjacent to Horizontal Surfaces of Various Planforms”, ASME Paper 74-WA/HT-66, (1974).
    [22]J. P. Holman, “Heat Transfer”, 7/E, McGraw-Hill, Inc, (1990).
    [23]G. S. Nolas, J. Sharp, and H. J. Goldsmid, “Thermoelectrics Basic Principles and New Materials Developments”, p93, (2001).
    [24]C. N. Liao , C. Chen, and K. N. Tu , “Thermoelectric characterization of Si thin films in silicon-on-insulator wafers”, JOURNAL OF APPLIED PHYSICS, Vol.86 ,(no.6).p3204-3208, (1999).
    [25]G. Weidemann and R. Franz, Ann. Phys. 89, 497, (1853).
    [26]G. A. Slack, J. Appl. Phys. 35, 3460, (1964)
    [27]L. Weber, E. Gmelin, H.J. Queisser, Phys. Rev. B 40, 1244 , (1989).
    [28]C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3K to the melting point”,Phys. Rev. 134, A1058-A1069 (1964).
    [29]M. Asheghi, K. Kurabayashi, R. Kasnavi, J. Plummer, and K. E. Goodson, “Thermal conduction in doped single-crystal silicon films,” JOURNAL OF APPLIED PHYSICS VOl. 91,(No 8), 15 APRIL (2002)
    [30]M. Kawakami and T. Uchimura, J. Phys. Soc. Jpn. 67, 2758 , (1998).
    [31]Ref. J. S. Dugdale, “The Electrical Properties of Metals and Alloys.”, Edward Arnold, London, (1977).
    [32]R.L. Smith, and S.D. Collins, J. Appl. Phys. 71, R1 (1992).
    [33]Joo-Hyoung Lee, Giulia A. Galli, and Jeffrey C. Grossman, “Nanoporous Si as an Efficient Thermoelectric Material”, Nano Lett., 8(11), pp 3750–3754, (2008).
    [34]C.W. Nan, Prog. Mater. Sci. 37 (1993)
    [35]F. X. Alvarez, D. Jou, and A. Sellitto“Pore-size dependence of the thermal conductivity of porous silicon:A phonon hydrodynamic approach”, APPLIED PHYSICS LETTERS 97, 033103 , (2010).
    [36]Moffat, R.J., “Describing the Uncertainties in Experimental Results,”Experimental Thermal and Fluid Science, Vol.1, pp. 3-17,( 1988).

    QR CODE
    :::