| 研究生: |
葉哲廷 Che-ting Yeh |
|---|---|
| 論文名稱: |
使用鐵電可變電容及PIN二極體之頻率可調天線 Frequency-Reconfigurable Antennas Using Ferroelectric Varactors and PIN Diodes |
| 指導教授: |
傅家相
Jia-shiang Fu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 天線 、鐵電可變電容 、PIN二極體開關 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是在天線內負載可調元件及開關來達成頻率可調與切換的效果。我們利用可調元件來改變天線的電氣長度以提升操作頻率範圍。論文中包含兩個天線,分別為:使用鐵電可變電容實現之頻率可調環形槽孔天線與2.45-GHz及5.8-GHz ISM頻帶切換微帶天線。
我們設計並且實作量測出一個使用可調匹配網路的頻率可調環形槽孔天線。此頻率可調天線是由負載鐵電可變電容在環形槽孔上設計而成。饋入方式使用共平面波導以保持單平面的優點。然而,使用共平面波導饋入難以在較大的頻寬上有良好的匹配,因此我們添加了可調匹配網路。可調匹配網路是使用串連一個鐵電可變電容來實現,此方法並不會增加天線的面積。量測結果顯示:當天線中鐵電可變電容偏壓由0 V調至15 V,天線操作頻率從6.71 GHz改變至9.14 GHz,其頻寬為30.6%。當偏壓15 V時,天線增益為−3.1 dBi。在整個操作頻帶內返回損耗皆大於20 dB,可表示可調匹配網路的效果良好。
論文中還設計了能切換於2.45-GHz及5.8-GHz ISM頻帶的微帶天線。在兩片patch中間以等距5個PIN二極體串聯。在開關為關閉的狀態時,只一片patch接通訊號;使天線共振頻率為5.8 GHz。反之,在開關為開啟的狀態下,兩片patch由開關接通,使電氣長度變長;其天線共振頻率改變為2.45 GHz。饋入方式為同軸探針的方法,並設計於適當的饋入位置可達到阻抗匹配的效果。量測結果顯示:當偏壓為−10 V時,開關為關閉的狀態時,天線共振頻率為5.75 GHz,天線增益為6 dBi;而當偏流為250 mA時,開關為開啟的狀態時,天線共振頻率為2.53 GHz,天線增益為−0.8 dBi。在兩個頻帶的返回損耗皆大於15 dB。
本論文成功設計並實現了使用鐵電可變電容實現之頻率可調環形槽孔天線與2.45-GHz及5.8-GHz ISM頻帶切換微帶天線。其中頻率可調環形槽孔天線的頻寬在現有使用鐵電可調電容之文獻中最寬的。
In this thesis, by loading the antennas with either tuning elements or switches, the operating frequency is made reconfigurable. Two antennas are presented: a frequency-reconfigurable slot-loop antenna with ferroelectric varactors and a switchable patch antenna for 2.45-GHz and 5.8-GHz ISM bands.
First, a frequency-reconfigurable slot-loop antenna with a tunable matching network is designed, fabricated, and measured. The frequency-reconfigurable antenna is implemented by loading ferroelectric varactors along a slot loop. CPW (coplanar waveguide) feed is used to preserve the advantage of being uniplanar. However, it is usually difficult to provide a good matching over wide frequency by a direct CPW feed. To solve this problem, a tunable matching network is added. The tunable matching network is implemented using a varactor in series, which does not increase the area of the antenna. Measurement results show that, when the bias voltage of the ferroelectric varactors is increased from 0 V to 15 V, the operating frequency of the antenna can be tuned from 6.71 GHz to 9.14 GHz, equivalent to a 30.6% bandwidth. When biased at 15 V, the antenna gain is −3.1 dBi. Over the entire frequency tuning range, the return loss is greater than 20 dB, validating the effectiveness of the tunable matching network.
Second, a patch antenna that can be switched between 2.45-GHz ad 5.8-GHz ISM bands is designed, fabricated, and measured. The antenna is designed by connecting two patches with five equally spaced PIN diodes, which act as switches. When the switches are off, only one patch is connected to the feed and the operating frequency is designed to be 5.8 GHz. On the other hand, when the switches are turned on, the two patches are electrically connected, resulting in an increase in electrical length and lowering the operating frequency to 2.45 GHz. The switchable patch antenna is fed using a coaxial probe feed. The position of the feed is adjusted so that good matching is observed for both frequencies. Measurement results show that, when the bias voltage of the PIN diodes is −10 V, i.e., when operated in the off state, the resonant frequency of the patch antenna is 5.75 GHz and its gain is 6 dBi. On the other hand, when the overall bias current is 250 mA, when operated in the on state, the resonant frequency of the patch antenna is 2.53 GHz with a gain of −0.8 dBi. At both frequency bands, the return loss is greater than 15 dB.
In this thesis, two frequency-reconfigurable antennas using either ferroelectric varactors or PIN diodes are successfully designed and implemented. The tunable slot-loop antenna achieves the widest effective bandwidth when compared with other ferroelectric-based tunable antennas in the literature.
[1] C. R. White and G. M. Rebeiz, “Single- and dual-polarized tunable slot-ring antennas,” IEEE Trans. Antennas Propag., vol. 57, no. 1, pp. 19–26, Jan. 2009.
[2] P.-L. Chi, R. Waterhouse, and T. Itoh, “Compact and tunable slot-loop antenna,” IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1394–1397, Apr. 2011.
[3] D. M. Pozar, Microwave Engineering, 4th ed.. John Wiley & Sons, Inc., 2004.
[4] B. K. Kormanyos, J. W. Harokopus, L. P. B. Katehi, and G. M. Rebeiz,“CPW-fed active slot antennas,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 4, pp. 541–545, Apr. 1994.
[5] T. M. Weller, L. P. B. Katehi, and G. M. Rebeiz, “Single and double folded-slot antennas on semi-infinite substrates,” IEEE Trans. Antennas Propag., vol. 43, no. 12, pp. 1423–1428, Dec. 1995.
[6] N. Behdad and K. Sarabandi, “Dual-band reconfigurable antenna with a very wide tunability range,” IEEE Trans. Antennas Propag., vol. 54, no. 2, pp. 409–416, Feb. 2006.
[7] G. Forma and J. M. Laheurte, “Compact oscillating slot loop antenna with conductor backing,” Electron. Lett., vol. 32, no. 18, pp. 1633–1635, Aug. 1996.
[8] J.-S. Fu, “Adaptive impedance matching circuits based on ferroelectric and semiconductor varactors,” Ph. D. dissertation, The University of Michigan, 2009.
[9] S. Gevorgian, Ferroelectrics in Microwave Devices, Circuits and Systems: Physics, Modeling, Fabrication and Measurements. New York: Springer-Verlag, 2009.
[10] J.-S. Fu, “Adaptive impedance matching circuits based on ferroelectric and semiconductor varactors,” Ph. D. dissertation, The University of Michigan, 2009.
[11] C. Huang, K. Buisman, L. K. Nanver, F. Sarubbi, M. Popadi ́c, T. L. M. H. Schellevis, L. E. Larson, and L. C. N. de Vreede, “A 67 dBm OIP3 mul-tistacked junction varactor,” IEEE Microw. Wireless Comp. Lett., vol. 18, no. 11, pp. 749–751, November 2008.
[12] J.-S. Fu, X. A. Zhu, J. D. Phillips, and A. Mortazawi, “Improving the linearity of ferroelectric-based microwave tunable circuits,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 354–360, February 2007.
[13] H. Jiang et al., “Miniaturized and reconfigurable CPW square-ring slotantenna loaded with ferroelectric BST thin film varactors,” IEEE Trans.Antennas Propag., vol. 60, no. 7, pp. 3111–3119, Jul. 2012.
[14] H.-Y. Li, S.-C. Chen, H.-P. Chen, W.-C. Ran, and J.-S. Fu, “A frequency-reconfigurable slot loop antenna using ferroelectric MIM capacitors,” IEICE Electron. Exp., vol. 10, no. 16, p. 20130521, Aug.2013.
[15] H.-Y. Li, C.-T. Yeh, J.-J. Huang, C.-W. Chang, C.-T. Yu, and J.-S. Fu, “CPW-fed frequency-reconfigurable slot-loop antenna with a tunable matching network based on ferroelectric varactors,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp.614–617, 2015.
[16] C.W. Jung, M.-J Lee, and F.D. Flaviis, “Reconfigurable dual-band antenna with high frequency ratio (1.6:1) using MEMS switches,” Electron. Lett., vol.44, no.2, pp.76‒77, Jan. 2008.1
[17] H. Torpi and Y. Damgaci, “Design of dual-band reconfigurable smart antenna,” in Prog. of Electron. Res. Symp., pp.425‒429, Aug. 2007.
[18] N. Misran, B. Bais, “Investigation of reconfigurability of dual-band microstrip patch antenna by utilizing MEMS switch,” Space Science and Comm. Conf., pp.111‒114, Oct. 2009.
[19] D. Bonefacic, J. Bartolic and M. Germ, “Shorted patch antenna with PIN diode operating band switching,” Euro. Microw. Conf., pp.862‒865, Sep.2006.
[20] C. A. Balanis, Antenna Theory: Analysis and Design, 2nd ed.. John Wiley& Sons, Inc., 1997.
[21] S. Simion, “Modeling and design aspects of the MEMS switch,” in Prog. of the International Semiconductor Conf., pp. 125–128, Oct. 2003.
[22] C. L. Goldsmith, Z. Yao, S. Eshelman, and D. Denniston, “Performance of low-loss RF MEMS capacitive switches”, IEEE Microwave and Guided Wave Letters, vol. 8, no. 8, pp. 269–271, Aug. 1998.
[23] T. Lee and S. Lee, “Modeling of SOI FET for RF switch applications,” IEEE RFIC Symp, pp. 479–482, May 2010.
[24] A. Bentini, S. Colangeli, M. Ferrari, and E. Limiti, “Broadband resistiveinductive compensated GaN-HEMT single-FET switch,” in Proc. Eur. Microw. Conf., pp. 1206–1209, Sep. 2010.
[25] H. Takasu and E. Yamashita, “Impedance characterization of GaAs FET switches,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 7, pp. 1422–1429, Jul. 1992.
[26] B. Lee, T. Kim, and K. Yang, “Performance comparison of InP-based PIN diodes for microwave switch applications,” Indium Phosphide and Related Materials, 2005. International Conf., pp.456–459, 8–12 May 2005.
[27] A. R. Caverly, and Z. W. Tang, “The influence of i-region width modulation on PIN diode attenuator design,” IEEE MTT-S Int. Microwave. Symp. Dig., pp 87–90, May 1995.
[28] T. Campbell, “MEMS switch technology approaches the “ideal switch”,” Applied Microwave & Wireless, vol. 13, no. 5, pp. 100‒107, May 2001
[29] A product of M/A-COM. For details, see http://www.macom.com/ products/product-detail/MA4P404-132.
[30] P. Bhartia and I. J. Bahl, “A frequency agile microstrip antenna,” in Proc. Antennas Propag. Society Int. Symp., May 1982, pp. 304–307.