跳到主要內容

簡易檢索 / 詳目顯示

研究生: 朱怡苹
Yi-Ping Chu
論文名稱: 受體配體叢集在外力下的理論研究
Strength of ligand-receptor cluster under external force : deterministic model
指導教授: 陳宣毅
Hsuan-Yi Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 生物物理研究所
Graduate Institute of Biophysics
畢業學年度: 95
語文別: 英文
論文頁數: 53
中文關鍵詞: 鍵結強度叢集受體-配體
外文關鍵詞: deterministic, strength, bond, ligand-receptor cluster
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出一個理論模型描述受到外力下的受體-配體叢集,並且修正了在貝爾(Bell) 模型中受體-配體的結合率。藉由研究受體-配體鍵結數目的速率方程式(rate equation),我們可以估計叢集的穩定度(生命期)。研究結果顯示當一具有N個平行受體-配體鍵結的叢集受到一外力F,叢集的生命期只和作用在一個受體-配體鍵結的力的大小f=F/N 有關。我們定義一臨界力fc:當f小於fc,叢集趨於穩定;當f大於fc,叢集的受體-配體鍵結會全部斷裂;當f等於fc,叢集的受體-配體鍵結會斷裂至一特定的鍵結數目(此時大部分的受體-配體是鍵結的),再經由鍵結受體-配體數的漲落使得叢集繼續斷裂。關於叢集的生命期,我們發現當f-> fc^+時,叢集的生命期小於貝爾模型的預測,並且正比於(f-fc)^(-1/2)。當(f-fc)/fc~O(1)時,叢集的生命期大於貝爾的預測,這主要是由於貝爾和我們的模型的初始受體-配體鍵結數目不同所造成。當f=fc 時,受體-配體鍵結數目的漲落變得重要,我們發現叢集的生命期正比於N^(1/3)。


    We present a theoretical model that describes ligand-receptor cluster under external force. We modify the model of Bell [1] by considering the rebinding of broken bonds in a consistent way. The stability of the cluster is studied by the rate equation of Nb, the number of connected bonds. Our study reveals that for a cluster with N parallel bonds under external force F, the lifetime of the cluster depends only on the force acting on each bond f = F/N. There exists a critical force Fc = Nfc below which the cluster is stable and above which the cluster dissociates. When f = fc, the number of rupture events per unit time is equal to that of rebinding at Nb^* = Nnb^*. We find nb^*~1, i.e., the effect of rebinding is important when most of the bonds are connected. When f approaches fc from above, the cluster spends most of the time near nb^*, the true lifetime of the cluster is shorter than Bell’s prediction and has a power law behavior T ~(f − fc)^(−1/2). We also show that the true lifetime of the cluster is longer than Bell’s prediction when f is significantly greater than fc due to different number of connected bonds predicted by both theories in the absence of force. When f =fc, for a finite size cluster, the bond number fluctuation is important, the lifetime of the cluster is related to the cluster size by T ~N^(1/3).

    Contents 1 Introduction 1 2 Background 6 2.1 Langevin equation . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Smoluchowski equation . . . . . . .. . . . . . . . . . . . . . . . . 7 2.3 Kramers’ escape rate theory . . . . . . . . . . . . . . . . . . . . 9 3 The model 13 3.1 Bell’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Linker elasticity and rebinding rate . . . . . . . . . . . . . . . . 19 3.3 Extended cubic theory for koff at large f . . . . . . . . . . . . . 26 4 Numerical and analytical solution of cluster lifetime 28 4.1 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.1.1 nb(t) for (f − fc)/fc ∼ O(1) . . . . . . . . . . . . . . . . . . 29 4.1.2 nb(t) for (f − fc)/fc << 1 . . . . . . . . . . . . . . . . . . . 29 4.2 Cluster lifetime near fc . . . . . . . . . . . . . . . . . . . . . . 33 5 Conclusion 38 A Lifetime near critical force: Finite-size effect 40 B Adhesion cluster under constant loading rate 45 References 52

    [1] G. I. Bell, Science 200, 618 (1978).
    [2] E. Evans, Annu. Rev. Biophys. Biomol. Struct. 30, 105 (2001).
    [3] R. Merkel, Phys. Rep. 346, 344 (2001).
    [4] E.-L. Florin, V. T. Moy, and H.E. Gaub, Science 264, 415 (1994).
    [5] R. Merkel, P. Nassoy, A. Leung, K. Ritchie, and E. Evans, Nature (London) 397, 50 (1999).
    [6] K. Prechtel, A. R. Bausch, V. Marchi-Artzner, M. Kantlehner, H. Kessler, and R. Merkel, Phys. Rev. Lett. 89, 028101 (2002).
    [7] U. Seifert, Phys. Rev. Lett. 84, 2750 (2000).
    [8] T. Erdmann and U. S. Schwarz, Phys. Rev. Lett. 92, 108102 (2004).
    [9] T. Erdmann and U. S. Schwarz, Europhys. Lett. 66, 603 (2004).
    [10] E. Evans, and K. Ritchie, Biophys. J. 76, 2439 (1999).
    [11] U. Seifert, Europhys. Lett. 58, 792 (2002).
    [12] A. Garg, Phys. Rev. B 51, 15592 (1995).
    [13] H.A. Kramers, Physica (Amsterdam) 7, 284 (1940).
    [14] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, revised edition. (North-Holland, Amsterdam, 1992).
    [15] J. L. Barrat and J. P. Hansen, Basic Concepts for Simple and Complex Liquids. (Cambridge University Press, 2003).
    [16] L. D. Landau and E.M. Lifshitz, Fluid Mechanics. (Prentice-Hall, Englewood CLiffs, NJ, 1962).
    [17] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics. (Clarendon, Oxford, 1986).
    [18] A. Einstein, Ann. Physik 17, 549 (1905) and 19, 371 (1906).
    [19] H. Risken, The Fokker-Planck equation. (Springer-Verlag, Berlin, 1989).
    [20] H. Y. Chen and Y. P. Chu, Phys. Rev. E 71, 010901(R)(2005).
    [21] E. Evans, A. Leung, V. Heinrich, and C. Zhu, Proc. Natl. Acad. Sci. U.S.A. 101,11281-11286 (2004).
    [22] E. Evans and K. Ritchie, Biophys. J. 72, 1541 (1997).
    [23] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equation. (Springer-Verlag, Berlin, 1992).

    QR CODE
    :::