| 研究生: |
王錦華 Jin-Hua Wang |
|---|---|
| 論文名稱: |
正交多工正交振幅調變之快速傅力葉轉換實現 FFT Realization of OMOAM Signals |
| 指導教授: |
鐘嘉德
Char-Dir Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 正交分頻多工 、快速傅力葉轉換 、正交多工正交振幅調變 |
| 外文關鍵詞: | OMOAM, FFT, IFFT, OFDM |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文擬對一新型調變家族—正交多工正交振幅調變訊號[10]在數位傳輸實現上做一探究。此一調變家族既使在不同時限(time-limited)基底建構下,仍可將正交多工正交振幅調變訊號表示為一系列相同頻率間隔、相互正交之子載波,經由對應資料振幅調變的形式。這樣的結果便可類比於正交分頻多工(Orthogonal Frequency-Division Multiplexing)的調變方式,因而藉此引進離散反傅力葉轉換(Inverse Discrete Fourier Transform)來完成基頻數位調變,並訴諸快速傅力葉轉換演算法來降低運算複雜度。使用上述方法實現的正交多工正交振幅調變,送入快速傅力葉轉換的輸入資料在某些基底不全選擇的情況中有許多數值為零的資料。因此可在基數-2之快速傅力葉演算法中加入檢查機制,進一步節省運算量。論文並探討在不同基底、不同參數選擇的調變下所能減少的運算複雜度,且推論各參數調整與所能節省複雜度之間的趨勢關係。
A digital realization of a novel modulation family called orthogonally multiplexed orthogonally amplitude-modulated (OMOAM) signals [10] is investigated in this thesis. Even if can be constructed by different time-limited basis sets, OMOAM signals can be represented by data-amplitude-modulated subcarriers which have equal frequency spacing and are orthogonal to each other. This result is analogous with the modulation scheme of the orthogonal frequency-division multiplexing. Therefore, the inverse discrete Fourier transform is applied to process digital baseband modulation and can be implemented by the IFFT algorithm to reduce computational complexity. Realized as mention above, OMOAM feeds many zero-valued data into IFFT in some cases when not all of the bases are chosen. Consequently, a checking mechanism can be involved in the radix-2 FFT algorithm to reduce computational complexity more. The amount of reduced complexity is discussed when OMOAM signals are constructed in different basis sets with different parameters. And the performance trend related to each parameter is inferred.
[1] R. W. Chang, “Synthesis of band-limited orthogonal signals for multi-channel data transmission,” Bell Syst. Tech. J., vol. 45, pp. 1775–1796, Dec. 1966.
[2] R. R. Mosier, and R.G. Clabaugh, “a Bandwidth Efficient Binary Transmission System,” AIEE Trans.,Vol.76,pp.723-728,Jan.1958.
[3] G.C. Porter, ”Error Distribution and Diversity Performance of a Frequency Differential PSK HF modem,” IEEE Trans. Commun., vol. COM-16, pp. 567–575, Aug. 1968.
[4] M. S. Zimmerman and A. L. kirsch, “The AN/GSC-10 (KATHRYN) variable rate data modem for HF radio,” IEEE Trans. Commun., vol. COM-15, pp. 197–205, April 1967.
[5] W. E. Keasler, and D.L. Bitzer, “High speed modem suitable for operating with a switched network,” U.S. Patent No. 4,206,320, June 1980.
[6] I. J. Cimini Jr., ”Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun., vol. COM-33, pp. 665–673, July 1985.
[7] M. Russel and G.L. Stuber, “Terrestrial digital video broadcasting for mobile reception using OFDM,” Wireless Personal Commun., vol. 2, no. 1-2, pp. 45–66, 1995.
[8] J.A.C. Bingham, “ADSL, VDSL, and Multicarrier Modulation,” New York, Wiley, 2000.
[9] D.C. Jones, “Frequency domain echo cancellation for discrete multitone asymmetric digital subscriber line transceivers,” IEEE Trans. Commun., vol. 43, pp. 1663–1672, Feb/Mar/Apr 1995.
[10] C. D. Chung, “Orthogonally-Multiplexed Orthogonal Amplitude Modulation,” IEEE Trans. Commun., vol. 50, pp. 415–428, MAR. 2002.
[11] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency-division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun.Technol., vol. COM-19, pp. 628–634, Oct. 1971.
[12] B. Porat, “A Course in Digital Signal Processing” pp. 133-155, John Wiley & Sons, 1997.
[13] R. E. Blahut, “Fast Algorithm for Digital Signal Processing,” MA:Addision-Wesley, 1985.
[14] S. Haykin, “Communication Systems,” pp. 85, John Wiley & Sons, 1994.
[15] S. M. S. M. Fleisher and S. Qu, “Quadrature frequency/phase modulation,” IEEE Trans. Commun., vol. 43, pp. 1513–1524, Feb./Mar./Apr. 1995.
[16] D. Saha and T. G. Birdsall, “Quadrature-quadrature phase shift keying,”IEEE Trans. Commun., vol. 37, pp. 437–448, May 1989.