| 研究生: |
黃啟銘 Chi-ming Huang |
|---|---|
| 論文名稱: |
有機半導體材料三併環噻吩衍生物之開發與其薄膜、單晶場效電晶體元件製備與分析 |
| 指導教授: |
陶雨臺
Yu-Tai Tao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 有機半導體材料 、場效電晶體 、三併環噻吩 |
| 外文關鍵詞: | OFET, thiophene, DTT |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇以文獻中的有機小分子2,6二苯基二噻吩併[3,2-b:2',3'-d]噻吩(2,6-diphenyldithieno[3,2-b:2',3'-d] thiophene ; DP-DTT;化合物 1)出發,設計並開發出以三併環噻吩(DTT)與雙三併環噻吩(BDT)作為中心結構的2-五氟苯基-6-苯基二噻吩併[3,2-b:2',3'-d]噻吩(2-pentafluorophenyl-6-phenyldithieno[3,2-b:2',3'-d]thiophene;FPP-DTT;化合物2)、2,6-二苯基雙二噻吩併[3,2-b:2',3'-d]噻吩[2,6-diphenylbis(dithieno [3,2-b:2',3'-d]thiophene) ; DP-BDT;化合物 3]、2-五氟苯基-6-苯基二噻吩併[3,2-b:2',3'-d]噻吩(2-pentafluoro phenyl-6-phenylbis(dithieno [3,2-b:2',3'-d]thiophene);FPP-BDT; 化合物4),將此四種材料經由物理氣相沈積法(physical vapor transport, PVT)分別養成單晶,經由單晶繞射實驗解得其立體結構後,製備成單晶及薄膜場效電晶體元件。利用單晶場效電晶體元件討論晶體結構與分子內在(intrinsic)電荷傳輸性質的關係,同時探討與薄膜表面形貌對於電荷傳輸的影響。
化合物1與 化合物3的單晶結構為魚骨狀排列方式,結晶成片狀,化合物2與化合物4則為面對面排列,結晶成針狀,其中化合物2 存在著最短的分子間距離3.756Å,其單晶場效電晶體元件電洞遷移率(hole mobility, µ)高達0.741cm2/V-s,開關電流比約為105,化合物 4電洞遷移率達0.725 cm2/V-s。化合物1與化合物3測得的最高載子遷移率分別為0.359 cm2/V-s、 0.405 cm2/V-s。
將以上四個有機小分子材料分別製成有機薄膜元件,在基板為25oC的條件下觀察薄膜表面形貌可發現化合物1在薄膜表面結晶性良好,為片狀結晶,載子遷移率可達0.202 cm2/V-s,化合物2製成元件表面形貌為長條狀結晶,載子遷移率可達0.134 cm2/V-s。另外也將蒸鍍基板升溫,觀察基板溫度對於薄膜表面晶粒大小提升與載子遷移率的影響。
Based on the reported core structure of dithieno[3,2-b:2',3'-d] thiophene (DTT), a series of organic semiconductor molecules was designed and synthesized, which are 2,6-diphenyldithieno[3,2-b:2',3'-d] thiophene (DP-DTT,compound1), 2-pentafluorophenyl-6-phenyl- dithieno[3,2-b:2',3'-d]thiophene(FPP-DTT, compound 2) 2,6-diphenyl- bis(dithieno [3,2-b:2',3'-d]thiophene (DP-BDT, compound 3), and 2-pentafluorophenyl-6-phenylbis(dithieno[3,2-b:2',3'-d]thiophene (FPP- BDT, compound 4). Single crystals for each compound were prepared by physical vapor transport (PVT) method in a home-made reactor, and were used for single crystal field-effect transistor (SCFET) devices fabrication in order to study their intrinsic charge transport behavior. Single crystals of compound 1 and compound 3 exhibit herring-bone structure, while compound 2 and compound 4 exhibit face-to-face π-π stacking. Among these, compound 2 exhibits the shortest intermolecular distance of 3.756Å, and a highest hole mobility of 0.741 cm2/V-s for SCFET, as well as a high current on-off ratio of 105. The hole mobilities for SCFET of compound 4, compound 1, and compound 3 were 0.725 cm2/V-s, 0.359 cm2/V-s, and 0.405 cm2/V-s, respectively. Meanwhile, organic thin-film transistor (OTFT) devices for each compound were also prepared in order to explore the correlation between the thin-film morphology and charge carrier mobility. With vacuum thermal evaporation at ambient substrate temperature of 25oC, compound 1 showed good crystallinity with 2-dimentional film morphology, as well as a high mobility of 0.202 cm2/V-s. Compound 2 exhibited 1-dimentional crystal structure, and hole mobility of 0.134 cm2/V-s for the film transistor. Substrate temperature was also raised during the evaporation process in order to study the effect of temperature on film morphology.
(a)蕭如娟, 科儀新知, 1988, 9, 6, 65. (b)曾志正, 儲三洋, 科學月刊, 1989, 第二十卷, 第 1 期, 44.(c)江文彥, 科學發展, 2002, 359 期, 68.
Tsumura, A.; Koezuka, K.; Ando, T. Appl. Phys. Lett. 1986, 49, 1210.
Horowitz, G.; Fichou, D.; Peng, X. Z.; Xu, Z. G.; Garnier, F. Solid State Commun. 1989, 72, 381.
Kelly, T. W.; Baude, P. F.; Gerlach, C.; Ender, D. E.; Muyres, D.; Hasse, M. A.; Vogel. D. E.; Theiss, S. D. Chem. Mater. 2004, 16, 4413.
Dimitrakopoulous, C. D.; Purushothaman, S.; Kymissis, J.; Callegari, A.; Shaw, J. M. Science 1999, 283.
Horowitz, G. Adv. Mater 1998, 10, 365.
郭家瑋, 有機薄膜電晶體之載子傳輸特性研究, 國立成功大學物理研究所博士論文, 2006.
Anthony, J. E. Angew. Chem. Int. Ed. 2008, 47, 452.
Desiraju, G. R.; Gavezzotti, A. J. Chem. Soc. Chem. Comm. 1989,621
Ling, M. M.; Bao, Z. Chem. Mater. 2004, 16, 4824.
(a) Mas-Torrent, M.; Rovira, C. Chem. Soc. Rev. 2008, 37, 827. (b) Liu, Y.; Wen, Y. Adv. Mater. 2010, 22, 1331. (c) Wu, W.; Liu, Y.; Zhu, D. Chem. Soc. Rev. 2010, 39, 1489.
Katz, H.; Bao, Z.; Gilat, S. Adv. Mater. 2002, 14, 99.
Breban, M.; Mezhenny, S.; Hines, D. R.; Romero, D. B.; Ballarotto, V. W.; Williams, E. D. MRS Proceedings, 2004, 828.
Yamamoto, T.; Takimiya, K. J. Am. Chem. Soc. 2007, 129, 2224.
Sun, Y.; Ma, Y.; Liu, Y.; Wang, Z.; Wang, Y.; Di, C.; Xiao, K.; Chen, X.; Qiu, W.; Zhang, B.; Yu, G.; Hu, W.; Zhu, D. Adv. Funct. Mater. 2006, 16, 426.
Liu, Y.; Wang, Y.; Wu, W.; Liu, Y.; Xi, H.; Wang, L.; Qiu, W.; Lu, K.; Du, C.; Yu, G. Adv. Funct. Mater. 2009, 19, 772.
Takahashi, Y.; Hasegawa, T.; Horiuchi, S.; Kumai, R.; Tokura, Y.; Siato, G. Chem. Mater. 2007, 19, 6382.
Park, S. K.; Jackson, T. N.; Anthony, J. E.; Mourey, D. A. Appl. Phys. Lett. 2007, 91, 063514.
Liu, C.; Minari, T.; Lu, X.; Kumatani, A.; Takimiya, K.; Tsukagoshi, K. Adv. Mater. 2011 , 23 , 523
Katz, H.; Bao, Z.; Gilat, S. Adv. Mater. 2002, 14, 99.
Meijer, E. J.; de Leeuw, D. M.; Setayesh, S.; van Veenendaal, E.; Huisman, B. H.; Blom, P. W. M.; Hummelen, J. C.; Scherf, U.; Klapwijk, T. M. Nat. Mater. 2003, 2, 678.
Bigelow, W. C.; Pickett, D. L.; Zisman, W. A. Collid Interface Sci. 1946, 513.
Tillman, N.; Ulman, A.; Schildkraut, J. S.; Penner, T. L. J. Am. Chem. Soc. 1988,11 0, 6 136-6 144
Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481.
Sagiv, J. J. Am. Chem. Soc. 1980, 102, 92
Fenter, P.; Eberhardt, A.; Eisenberger, P. Science 1994, 266, 1216.
Delamarche, E.; Michel, B.; Kang, H.; Gerber, C. Langmuir 1994, 10, 4103.
Dhirani, A. A.; Zehner, R. W.; Hsung, R. P.; Guyot-Sionnest, P.; Sita, L. R. J. Am. Chem. Soc. 1995, 11, 2609.
Fenter, P.; Eisenberger, P.; Li, J.; Camillone III, N.; Bernasek, S.; Scoles, G.; Ramnanarayanan, T. A.; Liang, K. S. Langmuir 1991, 7, 2013.
Keller, H.; Simak, P.; Schrepp, W.; Dembowski, J. Thin Solid Film 1994, 244, 799.
Itoh, M.; Nishihara, K.; Aramaki, K. J. Electrochem. Soc. 1995, 117, 12528.
Lee, T. R.; Laibinis, P. E.; Folkers, J. P.; Whitesides, G. M. Pure Appl. Chem.1991, 63, 821.
Folkers, J. P.; Gorman, C. B.; Laibinis, P. E.; Buchholz, S.; Whitesides, G. M.; Nuzzo, R. G. Langmuir 1995, 11, 813.
Allara, D. L.; Nuzzo, R. G. Langmuir 1985, 1, 54.
Laibinis, P. E.; Hickinan, J. J.; Wrighton, M. S.; Whitesides, G. M. Science 1989, 245, 845.
Tao, Y. T.; Lee, M. T.; Chang, S. C. J. Am. Chem. Soc. 1993, 115, 4350.
Chang, S. C.; Chao, I.; Tao, Y. T. J. Am. Chem. Soc. 1994, 116, 6792.
Lewis, I.; Singer, L. J. Phys. Chem. 1981, 85, 354.
Yamada, M.; Ikemoto, I.; Kuroda, H. Bull. Chem. Soc. Jpn. 1988, 61, 1057.
Birks, J.; Appleyard, J.; Pope, R. Photochem. Photobiol. 1963, 2, 493.
Liu, P.; Zhu, S. Chem. Mater. 2009, 21, 2727–2732.
Tian, H.; Deng, Y.; Pan, F.; Huang, L.; Yan, D.; Geng, Y. Wang, F. J. Mater. Chem. 2010, 20, 7998–8004.
Kumaki, D.; Ando, S.; Shimono, S.; Yamashita, Y. Appl. Phys. Lett. 2007, 90, 53506
Murphy, A. R.; Fre´chet, J. M. J. Chem. Rev. 2007, 107, 1066.
Frey, J.; Bond, A. D.; Holmes, A. B. Chem. Commun. 2002, 2424.
Jong, F. D.; Jansse, M. J. J. Org. Chem. 1971, 36, 1645.
47 (a) Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey,
R.; Brédas, J.-L. Chem. Rev. 2007, 107, 926; (b) Wang, L.; Nan, G.;
Yang, X.; Peng, Q.; Li, Q.; Shuai, Z. Chem. Soc. Rev. 2010, 39, 423; (c)
Troisi, A. Adv. Polym. Sci. 2010, 223, 259.