跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張白青
Pai-Ching Chang
論文名稱: 固態核磁共振於沸石 Y 經脫鋁及氟化後之鑑定與其機制探討
Solid State NMR Studies of Y zeolite Dealuminated with Ammonium Hexafluorosilicate
指導教授: 高憲明
Hsien-Ming Kao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 94
語文別: 中文
論文頁數: 161
中文關鍵詞: 脫鋁六氟矽酸銨
外文關鍵詞: dealumination, AHFS
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中使用三種不同陽離子型態的 Y 沸石,以六氟矽酸銨((NH4)2SiF6, AHFS) 作為脫鋁反應試劑。並使用 27Al、19F、23Na 等多項核種的魔角旋轉核磁共振 (MAS NMR),以及雙頻共振如 TRAPDOR、REDOR 等實驗作為主要研究技術。實驗結果證明在有無調整溶液 pH 值條件下,都會進行脫鋁反應,但在沸石結構的保存情況以及 MAS NMR的結果中有很大的不同。而脫鋁反應會影響骨架外的鋁的型態,而生成不同的氟鋁化合物。首先在 HY 沸石方面,在經過 AHFS 處理後,可在 27Al MAS NMR 觀察到四配位的鋁會脫離骨架而形成骨架外的六配位鋁化物,對應 19F MAS NMR 則位於 -141 ppm 乃是屬於 (NH4)3AlF6 化合物。在調整溶液 pH 值於 6-7 的情況下,所產生的主要產物為 (NH4)3AlF6 化合物,而在未經過調整溶液 pH 值的情況下,除了(NH4)3AlF6 之外還產生另外的結構,經過鑑定後確定為 NH4AlF4 化合物。其對應於 27Al MAS NMR 結果為位於 -20 ppm 至 -90 ppm的極寬之訊號,對應於 19F MAS NMR 則是觀察到兩個訊號峰,分別處於 -151 ppm 以及 -166 ppm. 而該訊號的產生需在 AHFS 反應劑量為 SiAHFS/AlHY >0.4。其次,在 NaY 沸石方面,在經過 AHFS 處理後,依然可在 27Al MAS NMR 觀察到四配位的鋁會脫離骨架而形成骨架外的六配位鋁化物。除了觀察到 (NH4)3AlF6 化合物之外,在不經過調整溶液 pH 值的情況下,在 19F MAS NMR 光譜上的主要訊號為位於 -190 ppm 屬於 Na3AlF6 化合物的訊號峰,以及一新的訊號峰位於 19F MAS NMR 中的 -158 ppm 位置。該訊號峰同時在有無經過調整溶液 pH 值的情況,尤其在調整溶液 pH 值於 6-7 的情況下,該產物訊號峰為 19F MAS NMR 上主要的訊號,經過雙頻共振技術確定其為 NaxAlFy 化合物。第三部分,在 NH4Y 沸石方面,經過 AHFS 處理後,可在 27Al MAS NMR 觀察到四配位的鋁會脫離骨架而形成骨架外的六配位鋁化物。在經過調整溶液 pH 值的情況下,即使在AHFS 反應劑量較高時,仍可在 XRD 繞射圖譜中觀察到其結構依然保持完好。在反應過後所產生的主要化合物為 (NH4)3AlF6。而在不經過調整溶液 pH 值的情況下,除了 (NH4)3AlF6 化合物之外,由 19F MAS NMR 觀察到產物中將包含較多種的 AlO6-xFx 化合物。


    The dealumination of Y zeolites with different cations by ammonium hexafluorosilicate (i.e., (NH4)2SiF6, AHFS) treatment was investigated by 27Al and 19F magic angle spinning (MAS) NMR, combined with double resonance MAS NMR. Our results demonstrated that the operating conditions of AHFS dealumination, that is, with and without pH adjustment, strongly affect the amount, state, and nature of extraframework aluminum species (EFAl). Different aluminum fluoro-complexes after dealumination were detected. First, for AHFS treated HY with pH adjustment, XRD revealed that tetrahedral aluminum was expelled from the zeolitic framework, resulting in the formation of (NH4)3AlF6, which was evident from the peak at 0 ppm in the 27Al MAS NMR and at -141 ppm in the 19F MAS NMR. Without pH adjustment, we observed that the Y zeolite structure were progressively destroyed with increasing the amounts of AHFS. Besides (NH4)3AlF6, another phase structure was observed and identified as NH4AlF4 by XRD and MAS NMR. A new broad powder pattern spreads from -20 to -90 ppm (NH4AlF4) is observed at SiAHFS/AlHY > 0.40. The NH4AlF4 crystalline phase observed exhibited two 19F resonance peaks at -151 ppm and -166 ppm, which are assigned, for the first time, to the fluorine atoms in the terminal Al-F and bridging Al-F-Al groups, respectively.
    Secondly, for AHFS treated NaY with pH adjustment, MAS NMR revealed that tetrahedral aluminum was expelled from the zeolitic framework, resulting in the formation of Na3AlF6, which shows the characteristic peaks at -1.7 and -10 ppm in the 23Na MAS NMR and at -190 ppm in the 19F MAS NMR spectra. Without pH adjustment, the Y zeolite structure was again destroyed with increasing the amount of AHFS. A new NaxAlFy structure was observed with 19F MAS NMR for both treatments.
    Finally, for AHFS treated NH4Y with pH adjustment, XRD revealed that tetrahedral aluminum was expelled from the zeolitic framework and mainly formed (NH4)3AlF6. The Y zeolite structure was still retained even at a higher SiAHFS/AlHY ratio (~ 1.0) with pH adjustment. Without pH adjustment, on the other hand, the products of dealumination of NH4Y are various AlO6-xFx complexes.

    中文摘要 …………………………………………………………………… I 英文摘要 …………………………………………………………………… III 謝誌 ………………………………………………………………………… V 目錄 ………………………………………………………………………… VI 圖目錄 ……………………………………………………………………… VIII 表目錄 ……………………………………………………………………… XI 第一章緒論 ………………………………………………………………… 1 1-1. 前言…………………………………………………………………… 1 1-2. 分子篩與沸石………………………………………………………… 1 1-3. Y 沸石………………………………………………………………… 7 1-4. 脫鋁反應……………………………………………………………… 8 1-5. 沸石的工業應用……………………………………………………… 10 1-6. 固態核磁共振儀……………………………………………………… 11 1-6-1. Zeeman 作用力………….………………………………………… 12 1-6-2. 化學非均向位移(Chemical Shift Anisotropy,CSA)………… 13 1-6-3. 偶極-偶極交互作用力(Dipole-Dipole interactions)…………16 1-6-4. J-coupling….…..…………………………………………………19 1-6-5. 四極矩作用力(Quadrupolar Interactions)…………………… 19 1-7. 固態核磁共振於沸石上之應用……………………………………… 23 1-7-1. 魔角旋轉(Magic Angle Spinning,MAS)…………………………24 1-7-2. 1H NMR ………………………………………………………………25 1-7-3. 29Si NMR ……………………………………………………………26 1-7-4. 27Al NMR ……………………………………………………………27 1-7-5. 19F NMR …………………………………………………………… 28 1-8. 研究動機與目的……………………………………………………… 29 第二章實驗部份………………………………………………………………31 2-1. 化學藥品 ………………………………………………………………31 2-2. 實驗儀器設備 …………………………………………………………32 2-3. 實驗步驟 ………………………………………………………………33 2-3-1 Y 沸石在水溶液進行脫鋁反應………………………………………33 2-3-2 Y 沸石在3 M 醋酸銨水溶液進行脫鋁反應…………………………34 2-3-3 NH4AlF4 的合成………………………………………………………34 2-3-4 AlF3 的合成 …………………………………………………………34 2-3-5 反應途徑驗證a ………………………………………………………35 2-3-6 反應途徑驗證b ………………………………………………………35 2-4 X 光粉末繞射儀(Power X-ray diffactometer;XRD) 介紹 ………37 2-5 固態核磁共振光譜儀技術介紹…………………………………………37 2-5-1 去耦合作用……………………………………………………………38 2-5-2 交叉極化………………………………………………………………40 2-5-3 REDOR 實驗..…………………………………………………………43 2-5-4 TRAPDOR 實驗…………………………………………………………49 2-5-5 HETCOR 實驗 …………………………………………………………50 2-5-6 MQMAS 實驗……………………………………………………………55 第三章結果與討論……………………………………………………………59 3-1. HY 系列…………………………………………………………………59 3-1-1. XRD 繞射圖譜分析 …………………………………………………58 3-1-2. 27Al 與19F MAS NMR 光譜分析……………………………………64 3-1-3. 19F{27Al} TRAPDOR MAS NMR 結果分析 …………………………77 3-1-4. 27Al{19F} 與27Al{1H} REDOR MAS NMR 實驗結果分析 ………80 3-1-5. 27Al{1H} CP 實驗結果分析……………………………………… 84 3-1-6. 1H{19F} CP with TPPM 實驗結果分析……………………………86 3-1-7. HETCOR—2D MAS NMR 實驗結果分析………………………………86 3-1-8. 多量子魔角旋轉實驗(MQMAS) 結果分析………………………… 91 3-1-9. NH4AlF4 結構與MAS NMR 光譜比較……………………………… 94 3-1-10 HY 的脫鋁可能反應途徑 …………………………………………101 3-2. NaY 系列………………………………………………………………107 3-2-1. XRD 繞射圖譜分析…………………………………………………107 3-2-2. 27Al 與19F MAS NMR 光譜分析………………………………… 110 3-2-3 23Na MAS NMR 光譜分析.………………………………………… 115 3-2-4. 19F{27Al} 與19F{23Na TRAPDOR MAS NMR 光譜分析………… 121 3-2-5. 19F{23Na}REDOR MAS NMR 光譜分析…………………………… 124 3-3. NH4Y 系列 ……………………………………………………………127 3-3-1. XRD 繞射圖譜分析…………………………………………………127 3-3-2. 27Al 與19F MAS NMR 光譜分析 …………………………………131 3-3-3. 19F{27Al} TRAPDOR 光譜分析……………………………………138 第四章結論 …………………………………………………………………143 參考文獻 ……………………………………………………………………145

    1.IUPAC Manual of Symbols and Terminology, appendix 2, Part 1, Colloid and
    Surface Chemistry, Pure Appl. Chem, 1972, 31, 578.
    2.Breck, D. W. Zeolite Molecular Sieves, Wiley :New York, 1974
    3.McVain, J. W. The Sorption of Gases and Vapors by solids Ruthedge and Sons,
    London, Chapter5 1932.
    4.Bennett, J. M.; Blackwell, C. S.; Cox, D. E. Interzeolite Chemistry, Am.
    Chem. Soc. Symp. Ser.218, American Chemical Society, Washington, D. C., 1983.
    5.吳榮宗, 工業觸媒概論, 增訂版, 國興出版社, 1989.
    6.Meier, W. J.; Olson D. Altas of Zeolite Structure types, Butterworths,
    London, 1992.
    7.趙桂蓉, 科學月刊, 1990年10月, 250期
    8.Parikh, P.A.; Subrahmanyam, N.; Bhat, Y.S.; Halgeri, A.B. J. Mol. Catal.
    1994, 88, 85.
    9.Rachwalik, R.; Olejniczak, Z.; Sulikowski, B. Catal. Today, 2005 101, 147–154
    10.Apelllian, M.R.; Fung, A.S.; Kennedy, G.J.; Degnan, T.F. J. Phys. Chem.
    1996, 100, 16577.
    11.Gola, A.; Rebours, B.; Milazzo, E.; Lynch, J.; Benazzi, E.; Lacombe, S.;
    Delevoye, L.; Fernandez, C.; Micropor. Mesopor. Mater. 2000, 40, 73-83
    12.Bowes, E.; Pelrine, B.P. US Patent 1983, 4388177.
    13.Beyerlein, R.A.; Kugler, E.L.; Tunison, M.E.; Vaughan, D.E.W. EP US Patent
    1991, 0259526B1.
    14.Apelian, M.R.; Degnan, T.F. ; Fung, A.S.; Kennedy, G.J. US Patent 1993,
    5200,168
    15.Apelian, M.R.; Degnan, T.F. US Patent 1993, 5238677.
    16.Weitkamp, J.; Sakuth, M.; Chen, C.; Ernst, S. J. Chem. Soc. Chem. Commun.
    1989, 1908.
    17.Cañizares, P.; Carrero, A.; Appl. Catal. A, 2003, 248, 227–237
    18.Marques, J.P.; Gener, I.; Lopes, J.M.; Ribeiro, F.R.; Guisnet, M.; Appl.
    Catal. A, 2006, 301, 96–105
    19.Ribeiro Carrott, M.M.L.; Russo, P.A.; Carvalhal, C.; Carrott, P.J.M.;
    Marques, J.P.; Lopes, J.M.; Gener, I.; Guisnet, M.; Ramoa Ribeiro, F.
    Micropor. Mesopor. Mater. 2005, 81, 259-267
    20.Han, S.; Shihabi, D.S.; Chang, C.D.; J. Catal. 2000, 196, 375–378
    21.Kumar, S.; Sinha, A.K.; Hegde, S.G.; Sivasanker, S. J. Mol. Catal. A.:2000,
    154, 115–120
    22.Breck, D.W.; Blass, H.; Skeels, G.W. US Patent. 1985, 4503023
    23.Garralón G.; Fornes V.; Zeolites , 1988, 8,268-272
    24.CRUZ, J.M.; CORMA, A.; FORNES, V. Appl. Catal., 1989, 50, 287-293
    25.Triantafillidis, C. S.; Vlessidis, A. G.; Evmiridis, N. P. Ind. Eng. Chem.
    Res. 2000, 39, 307-319
    26.Corma, A.; For V.; Martinez, A.; Orchilles, V.; Flank, W.H.; Whyte, T.E.
    (Editors), Perspectives in Molecular Sieve Science, ACS Symp. Ser., No. 368,
    American Chemical Society, Washington, DC, 1988, Ch. 35, p. 542.
    27.Pine, L.A.; Maher, P.J.; Watcher, W.A.; J. Catal. 1984, 85, 466.
    28.Melinda, J.D. Solid-State NMR Spectroscopy Principles and Applications,
    Blackwell Science, 2002.
    29.Andrew, E. R.; Bradbury, A.; Eades, R.G.; Nature ,1958, 182, 1659
    30.Lowe, I. J.; Phys. Rev. Lett., 1959, 2, 285
    31.Freude, D.; Hunger, M.; Pfeifer, H.; Schwieger, W. Chem. Phys. Lett. 1986,
    128, 62.
    32.Hunger, M. Solid State Nucl. Magn. Reson. 1996, 6, 1.
    33.Beck, L. W.; Haw, L. F. J. Phys. Chem. 1995, 99, 1075.
    34.Beck, L. W.; White, J. L.; Haw, L. F. J. Am. Chem. Soc. 199, 116, 9657.
    35.Hunger, M.; Ernst, S.; Steuernagel, S.; Weitkamp, J. Microporous Mater 1996,
    6, 349.
    36.Brunner, E. J. Chem. Soc. Faraday Trans. 1993, 89, 165.
    37.Freude, D.; Hunger, M.; Pfeifer, H. Z. Phys. Chem. (NF) 1987, 152, 171
    38.Brunner, E. J. Chem. Soc. Faraday Trans. 199, 86, 3957.
    39.Hunger, M.; Freude, D.; Pfeifer, H.; J. Chem. Soc. Faraday Trans. 1991,
    87,657
    40.Frydman, L.; Harwood, J.S.; J. Am. Chem. Soc. 1995, 117, 12779.
    41.Gilson, J.P.; Edwards, G.C.; Peters, A.W.; Rajagopalan, K.; Wormsbecher,
    R.F.; Roberie, T.G.; Shatlock, M.P. J . Chem. Soc., Chem. Commun., 1987, 91-
    92
    42.Ma, D.; Deng, F.; Fu, R.; Han, X.; Bao, X. J. Phys.Chem. B, 2001, 105, 1770
    43.Miller, J.M. Progress in Nucl. Magn. Reson. Spec. 1996, 28, 255-281.
    44.Silva, J.M.; Ribeiro, M.F.; Ribeiro, F.R.; Benazzi, E; Gnep, N.S; Guisnet,
    M. Zeolites,1996, 16, 275-280
    45.Wang, Q.L.; Torrealba, M.; Giannetto, G; Guisnet, M.; Perot, G.
    Zeolites,1990, 10, 703-706
    46.Corma, A.; Martfnez, A.; Arroyo, P.A.; Monteiro, J.L.F.; Sousa-Aguiar, E.F.;
    Appl. Catal. A, 1996, 142, 139-150
    47.Triantafillidis, C. S.; Vlessidis, A.G; Nalbandian, L.; Evmiridis, N.P.
    Micropor. Mesopor. Mater. 2001, 47,369-388
    48.Borbely, G. P.; Beyer, H. K. Phys. Chem. Chem. Phys., 2003, 5, 2145– 2153
    49.Manzer, L.E.; Science, 1990, 249, 31
    50.Manzer, L.E.; Rao, V.N.M.; Adv. Catal., 1993, 39,329
    51.Kemnitz, E.; Menz, D. H.; Prog. Solid State Chem. 1998, 26, 97.
    52.McVicker, G.B.; Kim, C.J.; Eggert, J.J. J. Catal. 1983, 80, 315.
    53.Sánchez, N.A.; Saniger, J.M.; Caillerie, J.B.D.; Blumenfeld, A.L.; Fripia,
    J.J. J. Catal. 2001, 201, 80-88.
    54.Sánchez, N.A.; Saniger, J.M.; Caillerie, J.B.E.; Blumenfeld, A.L.; Fripiat,
    J.J. Micropor. Mesopor. Mater. 2001, 50,41-52
    55.Martinez, E. J.; Girardet, J.-L.; Morat, C. Inorg. Chem. 1996, 35, 706.
    56.Lu, B.; Tsuda, T.; Sasaki, H.; Oumi, Y.; Itabashi, K.; Teranishi, T.; Sano,
    T. Chem. Mater. 2004, 16, 286-291
    57.Panov, A.G.; Gruver, V.; Fripiat, J.J. J. Catal. 1997, 168, 321
    58.Ghosh, A. K.; Kydd, R. A. J. Catal. 1987, 103, 399
    59.Zhang, W., Sun, M., Prins, R., J. Phys. Chem. B. 2002, 106, 11805-11809
    60.Voegtlin, A.C.; Ruch, F.; Guth, J.L.; Patarin, J.; Huve, L. Micro. Mater
    1997, 9, 955105
    61.Ruiz, J. M.; McAdon, M. H.; Garces, J. M. J. Phys. Chem. B., 1997; 101; 1733-
    1744
    62.Bhering, D. L.; Ramirez-Solis, A.; Mota, C. J. A. J. Phys. Chem. B., 2003,
    107, 4342-4347
    63.Liu, Y.; Tossell, J. J. Phys. Chem. B., 2003, 107, 11280-11289
    64.Kao, H.M.; Chen, Y-C.; Ting, C.-C.; Chen, P. T.; Jiang, J.-C.; Catalysis
    Today, 2004, 97, 13-23
    65.Shinn, D.B.; Crocket, H.D.S.; Haendler, H.M.; Inorg.Chem.1966, 5, 1927.
    66.Levitt, M. H.; Freeman, R.; Frenkiel, T. J. Magn. Reson. 1982, 50, 157-160.
    67.Shaka, A.J.; Barker, P.B.; Freeman. R. J. Magn. Reson. 1985, 64, 547-552.
    68.Bennett, A.E.; Rienstra, C.M.; Auger, M.; Lakshmi, K.V.; Griffin, R.G. J.
    Chem. Phys. 1995, 103. 6951-6958
    69.Ashida J.; Asakura, T. J. Magn. Reson. 2003, 165, 180-183
    70.Detken, A.; Hardy, E.H.; Ernst, M.; Meier, B. H. Chem. Phys.Lett. ,2002,
    356, 298.
    71.Peersen, O. B.; Wu, X. L.; Kustanovich, I.; Smith S. O. J. Magn. Reson.
    1993, 104, 334-339.
    72.Metz, G.; Wu, X. L.; Smith S. O., J. Magn. Reson. 1994, 110, 219-227
    73.Gullion, T.; Poliks, M.D.; Schaefer, J. J. Magn. Reson. 1988, 80, 553-558.
    74.Mueller, K.T.; Jarvie, T.P.; Aurentz, D.J.; Roberts, B.W. Chem. Phys. Lett.,
    1995, 242, 535-542
    75.Goetz, J.M.; Schaefer, J. J. Magn. Reson., 1997, 127,147-154
    76.Wickham, J. R.; York, S. S.; Rocher, N. M.; Rice, C. V. J. Phys. Chem. B,
    2006, 110, 4538-4541
    77.Fyfe, C.A.; Lewis, A.R.; Che´zeau, J.M.; Grondey, H. J. Am. Chem. Soc.
    1997, 119, 12210-12222
    78.Bertmer, M.; Eckert, H. Solid State Nucl. Magn. Reson. 1999, 15, 139–152
    79.Van Eck, E. R. H.; Mass, W. E. J. R.; Veeman, W. S. Chem. Phys. Lett. 1990,
    174, 428.
    80.Fyfe, C. A.; Muler, K. T.; Grondey, H.; Wong-Moon, K. C. J. Phys. Chem.
    1993, 97, 13484
    81.Beck, L. W.; White, J. L.; Haw, J. F. J. Am. Chem. Soc. 1994, 116, 9657.
    82.Deng, F.; Du, Y.; Ye, C.; Wang, J.; Ding, D.; Li, H. J. Phys. Chem. B, 1995,
    99, 15208
    83.Fyfe, C. A.; Wong-Moon, K. C.; Huang, Y.; Grondey, H.; Muler, K. T.; J.
    Phys. Chem. 1995, 99, 8707
    84.Grey, C. P.; Vega, A. J. Am. Chem. Soc. 1995, 117, 8232.
    85.Trebosc, J.; Wiench, J.W.; Huh, S.; Lin, V.S.-Y.; Pruski, M. J. Am. Chem.
    Soc. 2005, 127, 1587 .
    86.Laws, D.D.; Bitter H.-M.L., Jerschow, A. Angew. Chem. Int. Ed. 2002, 41,
    3096- 3129
    87.Rhim, W.-K.; Elleman, D.D.; Vaughan, R.W.; J. Chem. Phys. 1973, 59, 3740–
    3749.
    88.Frydman, L.; Harwood, J. S. J. Am. Chem. Soc. 1995, 117, 5367
    89.Gan, Z. J. Am. Chem. Soc. 2000, 122, 3242.
    90.Sharon E. Ashbrook and Stephen Wimperis, J. Magn. Reson. 2002, 156, 269–281
    91.Wouters, B.H.; Chen, T.; Grobet, P.J. J. Phys. Chem. B 2001, 105, 1135-1139
    92.Gore, K. U.; Abraham, A.; Hegde, S.G.; Kumar, R.; Amoureux, J.-P.;
    Ganapathy, S. J. Phys. Chem. B 2002, 106, 6115-6120
    93.Lim, K. H.; Grey, C. P. J. Am. Chem. Soc. 2000, 122, 9768-9780
    94.Alemany, L.B.; Kirker, G.W. J. Am. Chem. Soc. 2000, 122, 1284.
    95.Gilson, J.P.; Edwards, G.C.; Peters, A.W.; Rajgopalan, K.; Wormsbecher, R.F;
    Roberie, T.G.; Shatlock, M.P. J. Am. Chem. Soc. Chem. Commun. 1987, 91.
    96.Samoson, A.; Lippmaa, E.; Engelhardt, G.; Lohse, U.; Jerschkewiz, H.G.
    Chem.Phys.Lett.1987,134,589.
    97.Chupas, P. J.; Ciraolo, M. F.; Hanson, J. C.; Grey, C. P. J. Am. Chem. Soc.
    2001, 123, 1694
    98.Lacassagne, V.; Bessada, C.; Florian, P.; Bouvet, S.; Ollivier, B. J. Phys.
    Chem. B 2002, 106, 1862-1868
    99.Skibsted, J.; Nielsen, N.C.; Bildsoe, H.; Jakobsen, H.J.; J. Magn. Reson.,
    1991, 95, 88.
    100.Skibsted, J.; Nielsen, N.C.; Bildsoe, H.; Jakobsen, H.J. J. Am. Chem. Soc.
    1993, 115, 7351.
    101.Roberge, D.M.; Hausmann, H.; Holderich, W.F. Phys. Chem. Chem. Phys., 2002,
    4, 3128-3135
    102.Omegna, A.; Vasic, M.; Bokhoven, J.A.V.; Pirngruber G.; Prins, R.; Phys.
    Chem. Chem. Phys., 2004, 6, 447
    103.Chupas, P.J.; Grey, C.P. J. Catal. 2004, 224, 69–79
    104.Chupas, P.J.; Corbin, D. R.; Rao, V. N. M.; Hanson, J. C.; Grey, C. P. J.
    Phys. Chem. B.; 2003; 107, 8327-8336
    105.Kao, H.M.; Chen, Y-C. J. Phys. Chem. B.; 2003; 107, 3367-3375

    QR CODE
    :::